• Title/Summary/Keyword: Position System

Search Result 9,785, Processing Time 0.04 seconds

A study on the PSD sensor system for localization of mobile robots (이동 로봇의 위치측정을 위한 PSD 센서 시스템에 관한 연구)

  • Ro, Young-Shick
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.330-336
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robots work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

High Precision Position Synchronous Control in a Multi-Axes Driving System (다축 구동 시스템의 정밀 위치동기 제어(I))

  • Byun, Jung-Hoan;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

Comments on the Computation of Sun Position for Sun Tracking System (태양추적장치를 위한 태양위치계산에서의 제언)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.47-59
    • /
    • 2016
  • As the usage of sun tracking system in solar energy utilization facility increases, requirement of more accurate computation of sun position has also been increased. Accordingly, various algorithms to compute the sun position have been proposed in the literature and some of them insist that their algorithms guarantee less than 0.01 degree computational error. However, mostly, the true meaning of accuracy argued in their publication is not clearly explained. In addition to that, they do not clearly state under what condition the accuracy they proposed can be guaranteed. Such ambiguity may induce misunderstanding on the accuracy of the computed sun position and ultimately may make misguided notion on the actual sun tracking system's sun tracking accuracy. This work presents some comments related to the implementation of sun position computational algorithm for the sun tracking system. We first introduce the algorithms proposed in the literature. And then, from sun tracking system user's point of view, we explain the true meaning of accuracy of computed sun position. We also discuss how to select the proper algorithm for the actual implementation. We finally discuss how the input factors used in computation of sun position, like time, position etc, affect the computed sun position accuracy.

Review on Introduction Possibility of Open Position System in Korea Police (한국경찰의 개방형임용제 도입가능성에 대한 검토)

  • Jo, Hyun-Bin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.397-407
    • /
    • 2011
  • The Open Position System is a new personnel management system started in korea, 1999.Open Position System have purpose to use outstanding talents and to expertise from both public and private sector. Korean government adapted open position system in order to use the right man in the right place. And Korean government incresae application of Open Position System. But, in spite of strong good point of Open Position System, We have limitation to apply Open Position System in police organization, generally. Because police have unique characteristics compare with other public organization. There is constant controversy concerning unique characteristics of police organization. Now, Korean police adopt Open Position System in few division: Chiep of Driver's License Agency, Director General for Audit and Inspection of Nation police Agency, Chiep of police hospital. Therefore, this study explore, extention possibility of Open Position System in Korean police.

Electronic-Hydraulic Hitch Control System for Agricultural Tractor -Position Control- (트랙터의 전자유압식(電子油壓式) 히치제어 시스템에 관한 연구(硏究)(I) -위치제어(位置制御)-)

  • Yoo, S.N.;Ryu, K.H.;Park, J.G.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.168-180
    • /
    • 1989
  • This study was attempted to develop the electronic-hydraulic hitch control system for position control of tractor plow and investigate the control performance of the system through experiments. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in position control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. The following conclusions were derived from the study; 1. For the position control system operated on on-off control mode, positions of implement were controlled within ${\pm}0.73^{\circ}{\sim}{\pm}1.46^{\circ}$ in rockshaft angle to the reference position when the hydraulic flow rates were 5~15 l/min. For the position control system operated on PWM control mode, positions of implement were controlled within ${\pm}0.73^{\circ}$ to the reference position regardless of hydraulic flow rates. It means that the implement could be positioned more accurately to the reference position on PWM control mode than on on-off control mode. 2. As results of the frequency responses of the position control systems, no clear difference in control performance between on-off control and PWM control modes was found. As the hydraulic flow rates increased, the corner frequencies of amplitude attenuation and phase-angle change increased. It means that the control performance of the system could be improved as the hydraulic flow rate increases.

  • PDF

JOINT POSITION COMTROL SYSTEM FOR FARA ROBOTS OF SAMSUNG ELECTROICS

  • Kim, Hyo-Kyu;Kim, Dong-Il;Kim, Sungkuwn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.913-916
    • /
    • 1990
  • In this paper, attempts have been made to control AC synchronous servo motor used as actuators of joints of the FARA robot with high dynamic performance and precise positioning. The AC synchronous servo motors used in FARA robots have resolves as position sensors. Resolver to digital converters are used in order to obtain the information of rotor speed and position from resolver outputs. The proposed joint position control system consists of four speed controller and one position controller. Analog methods are used in the position controller, while digital methods are used in the position controller. For precise position control, PID control algorithm and interpolation functions are executed in two 16 bit microprocessors with sampling rate 2ms. Experimental results show that the proposed joint position control system can be effectively applied to industrial robots in order to obtain high dynamic performance and precise positioning. The proposed joint position control system is being used in the control of FARA robots of Samsung Electronics.

  • PDF

Development of Position Indicator for System-Integrated Reactor SMART (일체형원자로 SMART의 제어봉 위치지시기 개발)

  • Yu, Je-Yong;Kim, Ji-Ho;Huh, Hyung;Kim, Jong-In;Chang, Moon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.921-926
    • /
    • 2001
  • The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. In this study, a thorough investigation on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. A design of the control rod position indication system using reed switch for the CEDM on the system-integrated reactor SMART was developed based on the position indicator technology identified through the investigation. The feasibility of the design was evaluated by test of manufactured control rod position indicator using reed switch for SMART.

  • PDF

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

Precise Position Synchronous Control of Four-Axes System Based on Acceleration Control (가속도제어에 의한 4축 시스템의 정밀 위치동기제어)

  • Jeong, Seok-Kwon;Choi, Bong-Seok;You, Sam-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1245-1254
    • /
    • 2004
  • In this paper, we deal with a precise position synchronous control of four-axes system which is working under various load disturbances. Each axis driving system is consisted of a speed controller and an acceleration controller as an inner loop instead of conventional current control scheme. The acceleration control plays an important roll to suppress load disturbances quickly. Also, each axis is coupled by a maximum position synchronous error comparison to minimize position synchronous errors according to integration of speed differency. As a result, the proposed system enables precise synchronous control with good robustness against load disturbances during transient as well as steady state. The stability and robustness of the proposed system are investigated through its frequency characteristic and numerical simulations. Finally, experimental results under load disturbances demonstrate the effectiveness of the proposed control system fur four-axes position synchronous control.

Navigation of a mobile robot using active landmarks (능동 표식을 이용한 이동 로봇의 운행)

  • 노영식;김재숙;권석근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.916-919
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robot's work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF