• Title/Summary/Keyword: Position Sensorless Control

Search Result 339, Processing Time 0.028 seconds

Wide-Range Sensorless Control for SPMSM Using an Improved Full-Order Flux Observer

  • Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.721-729
    • /
    • 2015
  • A sensorless control method was recently investigated in the robot and automation industry. This method can solve problems related to the rise of manufacturing costs and system volume. In a vector control method, the rotor position estimated in the sensorless control method is generally used. This study is based on a conventional full-order flux observer. The proposed full-order flux observer estimates both currents and fluxes. Estimated d- and q-axis currents and fluxes are used to estimate the rotor position. In selecting the gains, the proposed full-order flux observer substitutes gain k for the speed information in the denominator of the gain for fast convergence. Therefore, accurate speed control in a low-speed region can be obtained because gains do not influence the estimation of the rotor position. The stability of the proposed full-order flux observer is confirmed through a root-locus method, and the validity of the proposed observer is experimentally verified using a surface permanent-magnet synchronous motor.

Experimental Evaluation of Position Sensorless Control on Hybrid Electric Vehicle Applications

  • Choi, Chan-Hee;Kim, Bum-Sik;Lee, Young-Kook;Jung, Jin-Hwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.464-470
    • /
    • 2011
  • In this paper, the feasibility of applying a position sensorless control technique to hybrid electric vehicles (HEVs) is practically evaluated. The proposed position estimator has a straightforward structure with properties that combines the model and the saliency tracking-based rotor position estimation for interior permanent magnet synchronous motors (IPMSMs). The proposed method can be used in the event of sensor loss or sensor recovery to sustain continuity of operations. The developed system takes into account the estimated position transition between two distinct sensorless methods. The transition is enhanced by introducing a synchronized transition algorithm based on a single tracking observer. Extensive experimental results are presented to verify the principles and show a reliable estimation performance over the entire speed range including standstill under 150% load conditions.

Sensorless Starting Method and Fuel Pressure Control of BLDC Motor for Fuel Pump of Vehicle (자동차 연료 펌프용 BLDC 모터의 센서리스 기동 및 연료 압력 제어)

  • Chang, Jin-Wook;Yoon, Duck-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.114-121
    • /
    • 2013
  • High efficiency operation is required for motors of vehicle to increase fuel efficiency due to the regulation of exhaust gas. This paper presents a control method of fuel pressure to increase fuel efficiency and a sensorless control method of BLDC motor to get higher efficiency than conventional brushed DC motor. Initial rotor position of BLDC motor is detected from current value that is occurred by test voltage pulse and rotor is accelerated by defined sequence to enter sensorless operation mode. The algorithm to control flow rate of fuel pump uses PI controller that is control motor speed to maintain the target fuel pressure commanded by ECU.

Vector Control of Interior Permanent Magnet Synchronous Motor without Speed Sensor (속도센서 없는 매입형 영구자석 동기전동기의 벡터제어)

  • Choi, Jong-Woo;Lee, Seung-Hun;Kim, Heung-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1241-1249
    • /
    • 2007
  • Lately, many approaches of speed sensorless control method for Interior Permanent Magnet Synchronous Motor(IPMSM) ha, been developed. This paper proposes a novel sensorless algorithm for speed estimation of IPMSM. First of all, proposes sensorless method estimates flux of rotor using foundational voltage equation of IPMSM and then estimates position and speed of rotor using Phase Locked Loop(PLL). Proposed sensorless algorithm demonstrated through simulation using Matlab simulink and experiment.

Sensorless Speed Control of PMSM using Stator Flux Estimation and PLL (고정자 자속 추정과 PLL을 이용한 동기모터의 센서리스 속도 제어)

  • Kim, Min Ho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the sensorless position control of the Permanent Magnet Synchronous Motor (PMSM) using stator flux estimation and Phase Lock Loop (PLL). The field current and the torque current are required in order to perform the vector control of the PMSM. At this time, it is necessary for the torque to know the exact position of the magnetic flux generated by the permanent magnet, because the torque must be applied torque current in the direction orthogonal to the permanent magnet. In general the speed of the PMSM is controlled by using a magnetic position sensor. However, this paper, we estimates the stator flux by using the PLL method without the magnetic position sensor. This method is simple and easy, in addition it has the advantage of a stabile estimation of the rotor. Finally the proposed algorithm was confirmed by experimental results and showed the good performance.

Development of Sensorless Hydraulic Servo System for Underwater Harbor Construction (수중항만공사용 로봇의 센서리스 유압 서보 시스템 개발)

  • Kim, T.S.;Kim, C.H.;Park, K.W.;Lee, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.708-713
    • /
    • 2004
  • This research develops a sensorless hydraulic servo system of Parallel-Typed robot for harbour construction. Purpose of the robot is to mechanize the construction, which is accomplished through a joystick's operating by a stoneworker (or diver). The robot is attached on the end of an excavator as its attachment or transported by a crane to reach the desired place. The embedded compact controller is installed on the robot body and controlled by wireless telecommunication. For underwater work, it is necessary to waterproof the robot and its sensors. Especially, a sensor waterproof is a main drawback for the underwater robot. This leads us to develop a hydraulic robot position controller using an observer which gives the position information without any position sensor. We design a neural network to identify the displacement change according to the command voltage to servo valve. To verify the sensorless controller, this paper presents the performance of the sensorless control for which the position is given by the observer comparing with that of the sensor control for which the position is measured by LVDT sensors.

  • PDF

Parameter Identification and Control for Linear Compressors (리니어 컴프레서를 위한 파라미터 추정 및 제어)

  • Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.243-245
    • /
    • 2006
  • A closed-loop sensorless stroke control system for a linear compressor has been designed. The motor parameters are identified as a function of the piston position and the motor current. They are stored in ROM table and used later for the accurate estimation of piston position. Also it was attempted to approximate the identified motor parameters to the 2nd-order surface functions. Some experimental results are given in order to show the feasibility of the proposed control schemes for linear compressors.

  • PDF

A Study on the Signal Processing Method for the Hall Sensorless Position Control of ETC Control System using a BLDC Motor (ETC 구동용 BLDC 제어시스템의 홀센서리스 위치제어를 위한 신호처리기법에 관한 연구)

  • Lee, Sang-Hun;Lee, Seon-Bong;Park, Cheol-Hu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.92-99
    • /
    • 2008
  • This paper describes an signal processing method for the hall sensorless position control of ETC control system using a BLDC motor. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analog voltage output on the throttle valve instead of BLDC motor for detecting rotor position of motor. So the additional commutation information is necessarily needed to control the mentioned ETC module. In order to estimate and determine the commutation state, it is proposed to properly manipulate the resolution of A/D converter considering the mechanical parameter, that is, the number of motor slot and the ratio of reduction gear. Through this method, the estimation of commutation state for operating the system is possible and the discrete signal for commutation is stably obtained. The validity of the method is examined through the experimental results.

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

Sensorless Vector Control of IPMSM Using Reduced Order Observer (저감 차수 관측기를 이용한 IPMSM의 센서리스 벡터제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.161-166
    • /
    • 2003
  • This paper proposes a sensorless vector control of interior permanent magnet synchronous motor(IPMSM) using a reduced order observer. This method introduce the auxiliary control inputs that can eliminate the nonlinear term in the electrical equations and realize the linearization of the motor model. The rotor speed estimate with the observer that needs only the q-axis current. The rotor position calculate using the estimated rotor speed. The speed and position control implement with the estimated value. The validity of the proposed scheme is confirmed by various response characteristics.