• Title/Summary/Keyword: Position Reporting Accuracy

Search Result 4, Processing Time 0.191 seconds

A Study of Test Method for Position Reporting Accuracy of Airborne Camera (항공기 탑재용 카메라 위치출력오차 측정방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.646-652
    • /
    • 2013
  • PRA(Position Reporting Accuracy) for EO/IR(Electro-Optic/Infrared) airborne camera is an important factor in geo-pointing accuracy. Generally, rate table is used to measure PRA of gimbal actuated camera like EO/IR. However, it is not always possible to fix an EUT(Equipment for Under Test) to rate table due to capacity limit of the table on the size and weight of the object(EUT). Our EO/IR is too big and heavy to emplace on it. Therefore, we propose a new verification method of PRA for airborne camera and assess the validity of our proposition. In this method we use collimator, angle measuring instrument, 6 dof motion simulator, optical surface plate, leveling laser, inclinometer and poster(for alignment).

Precision Localization of Vehicle using AVM Image and RTK GPS for Urban Driving (도심 주행을 위한 AVM 영상과 RTK GPS를 이용한 차량의 정밀 위치 추정)

  • Gwak, Gisung;Kim, DongGyu;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.72-79
    • /
    • 2020
  • To ensure the safety of Advanced Driver Assistance Systems (ADAS) or autonomous vehicles, it is important to recognize the vehicle position, and specifically, the increased accuracy of the lateral position of the vehicle is required. In recent years, the quality of GPS signals has improved a lot and the price has decreased significantly, but extreme urban environments such as tunnels still pose a critical challenge. In this study, we proposed stable and precise lane recognition and tracking methods to solve these two issues via fusion of AVM images and vehicle sensor data using an extended Kalman filter. In addition, the vehicle's lateral position recognition and the abnormal state of RTK GPS were determined using this approach. The proposed method was validated via actual vehicle experiments in urban areas reporting multipath and signal disconnections.

A Study of Alignment Tolerance's Definition and Test Method for Airborne Camera (항공기 탑재용 카메라 정렬오차 정의 및 시험방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun;Lee, Hang-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.154-159
    • /
    • 2013
  • Alignment tolerance for EO/IR airborne camera using common optic is an important factor in stabilization accuracy and geo-pointing accuracy. Before airborne camera is mounted on the aircraft, defining alignment tolerance and verification of it is essential in production as well as research and development. In this paper we establish basic concept on the definition and elements of alignment tolerance for airborne camera and propose how to measure each of those elements. Components and the measurement sequence of alignment tolerance are as follows: 1) tolerance of alignment between EO and IR LOS. 2) tolerance of sensor alignment. 3) tolerance of position reporting accuracy. 4) tolerance of mount alignment

Prediction Accuracy Enhancement Based on Adaptive Reporting Schemes of Mobile's Mobility Status Information (적응형 이동정보 보고 알고리즘에 기반한 무선 단말의 이동성 예측 정확도 향상 방안)

  • Ko, Yong-Chae;Bae, Jung-Hwa;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.778-784
    • /
    • 2007
  • Predictive channel reservation techniques have widely been studied in mobile cellular networks in order to meet the desired quality-of-service requirements. Those efforts are mostly concentrated on predicting the target cell that a mobile will move to and reserving the channel before the actual handoff, and subsequently reducing handoff-dropping probability and improving bandwidth utilization. In this paper, we propose adaptive reporting schemes that a mobile reports its mobility status information such as position, speed, and direction in an appropriate moment based on the user's mobility pattern characteristics and, hence the network can make a more-accurate prediction on the user's mobility. We show from the simulations that the proposed scheme is capable of keeping target cell prediction more accurate and required number of reporting through the wireless up-link channel lower.