• Title/Summary/Keyword: Position Feedback Control

Search Result 574, Processing Time 0.066 seconds

Off-line Visual Feedback Control of SCARA Robot Using Off Line Programming (오프라인 프로그래밍을 이용한 스카라 로봇의 비쥬얼 피드백제어)

  • 신행봉;이우송;이현철;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.235-240
    • /
    • 2004
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using OLPS. A proposed visual calibration scheme is based on position-based visual feedback. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test and construction of simple silhouette figures. Then camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Kinematic Modeling for Position Feedback Control of an 2 - D.O.F Wheeled Mobile Robot (2-자유도 이동 로보트의 위치 궤환제어를 위한 기구학 모델링)

  • 정용욱;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.27-40
    • /
    • 1996
  • This paper proposed a kinematic modeling methodlogy and feedback control system based on kinematics for 2 degrees of freedom of 4-wheeled mobile robot. We assigned coordinate systems to specify the transformation matirx and write the kinematic equation of motion. We derived the actuated inverse and sensed forwared solution for the calculation of actual robot orientation and the desired robot orientation. It is the most significant error and has the largest impact on the motion accuracy. To calculate the WMR position in real time, we introduced the dead-reckoning algorithm and composed two feedback control system that is based on kinematics. Through the simulation result, we compare with the ffedback control system for position control.

  • PDF

Position/Force Control of a Robot by a Nonlinear Compensator and Feedforward Control (비선형 보상기와 피드포워드 제어에 의한 로봇의 위치/힘 제어)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 1998
  • This paper deals with a hybrid position/force control of a robot which is moving on the constrained object with constant force. The proposed controller is composed of a position and force controller. The position controller has a nonlinear compensator which is based on the dynamic robot model and the force controller is attached by feedforward element. A direct drive robot with hard nonlinearity which is controlled by the proposed algorithm has moved on the constrained object with a high stiffness and low stiffness. The results show that the proposed controller has more vibration suppression effects which is occurred to the constrained object with a high stiffness, than a existing feedback controller, and accurate force control can be obtained by comparatively a small feedback gain.

  • PDF

Control Method for the Tool Path in Aspherical Surface Grinding and Polishing

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • This paper proposes a control algorithm, which is verified experimentally, for aspherical surface grinding and polishing. The algorithm provides simultaneous control of the position and interpolation of an aspheric curve. The nonlinear formula for the tool position was derived from the aspheric equation and the shape of the tool. The function was partitioned at specific intervals and the control parameters were calculated at each control section. The position, acceleration, and velocity at each interval were updated during the process. A position error feedback was introduced using a rotary encoder. The feedback algorithm corrected the position error by increasing or decreasing the feed speed. In the experimental verification, a two-axis machine was controlled to track an aspherical surface using the proposed algorithm. The effects of the control and process parameters were monitored. The results demonstrated that the maximum tracking error with tuned parameters was at the submicron level for concave and convex surfaces.

Joint Position Control using ZMP-Based Gain Switching Algorithm for a Hydraulic Biped Humanoid Robot (유압식 이족 휴머노이드 로봇의 ZMP 기반 게인 스위칭 알고리즘을 이용한 관절 위치 제어)

  • Kim, Jung-Yup;Hodgins, Jessica K.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1029-1038
    • /
    • 2009
  • This paper proposes a gain switching algorithm for joint position control of a hydraulic humanoid robot. Accurate position control of the lower body is one of the basic requirements for robust balance and walking control. Joint position control is more difficult for hydraulic robots than it is for electric robots because of an absence of reduction gear and better back-drivability of hydraulic joints. Backdrivability causes external forces and torques to have a large effect on the position of the joints. External ground reaction forces therefore prevent a simple proportional-derivative (PD) controller from realizing accurate and fast joint position control. We propose a state feedback controller for joint position control of the lower body, define three modes of state feedback gains, and switch the gains according to the Zero Moment Point (ZMP) and linear interpolation. Dynamic equations of hydraulic actuators were experimentally derived and applied to a robot simulator. Finally, the performance of the algorithm is evaluated with dynamic simulations.

Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF

Robot manipulator's contact tasks on uncertain flexible objects

  • Wu, Jianqing;Luo, Zhiwei;Yamakita Masaki;Ito, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.460-463
    • /
    • 1995
  • The present paper studies a robot manipulator's contact tasks on the uncertain flexible objects. The flexible object's distributed parameter model is approximated into a lumped "position state-varying" model. By using the well-known nonlinear feedback compensation, the robot's control space is decomposed into the position control subspace and the object's torque control subspace. The optimal state feedback is designed for the position loop, and the robot's contact force is controlled through controlling the resultant torque on the object using model-reference simple adaptive control. Experiments of a PUMA robot interacting with an aluminum plate show the effectiveness of this control approach. approach.

  • PDF

A Image Feedback control of Mobile Robot for Target Tracking (모바일 로봇의 목표물 추적을 위한 이미지 궤환 제어)

  • Hwang, Won-Jun;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.90-98
    • /
    • 2015
  • This research propose with image-based visual a new approach to design a feedback control of mobile robot. because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using camera, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is inmage-based visual feedback. Recently, image based visual feedback is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. in case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual feedback method that can reduce the curved trajectory of mobile robot in th cartesian space.

Research of Synthetic Resonance Characteristics for Electrohydraulic Thrust Vector Control Actuation System (전기-유압식 추력벡터제어 구동장치시스템의 합성공진 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.151-160
    • /
    • 2008
  • In this paper, the analysis results of synthetic resonance characteristics are described for the electrohydraulic thrust vector control actuation system. The synthetic resonance is induced by integration of position servo actuation system on the flexible launch vehicle mounting structure. The new resonance mode is synthesized due to composition of hydraulic resonance for electrohydraulic position servo system with inertia load condition and structural resonance for flexible mounting structure. This synthetic resonance can make stability of control system worse by feedback and amplification of control system. The exact nonlinear analysis model of this phenomenon is developed to predict and design a control algorithm for improvement characteristics. The DPF (Dynamic Pressure Feedback) control algorithm has been designed and has excellent resonance suppression capability.

  • PDF