• Title/Summary/Keyword: Position Estimation Algorithm

Search Result 550, Processing Time 0.023 seconds

Position and Orientation Estimation of a Maneticalluy Guided-Articulated Vehicle (자기적 안내제어시스템을 이용하는 굴절차량의 위치 및 방위각 추정)

  • Yun, Kyong-Han;Kim, Young-Chol;Min, Kyung-Deuk;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1915-1923
    • /
    • 2011
  • For automated guidance control of a magnetically guided-all wheel steered vehicle, it is necessary to have information about position and orientation of the vehicle, and deviations from the reference path in real time. The magnet reference system considered here consists of three magnetic sensors mounted on the vehicle and magnetic markers, which are non-equidistantly buried in the road. This paper presents an observer to estimate such position and orientation at the center of gravity of the vehicle. This algorithm is based on the simple kinematic model of vehicle and uses the data of wheel velocity, steering angle, and the discrete measurements of marker positions. Since this algorithm requires the exact values of initial states, we have also proposed an algorithm of determining the initial position and orientation from the 16 successive magnet pole data, which are given by the magnetic measurement system(MMS). The proposed algorithm is capable of continuing to estimate for the case that the magnetic sensor fail to measure up to three successive magnets. It is shown through experimental data that the proposed algorithm works well within permissible error range.

Improved Localization Algorithm for Ultrasonic Satellite System (초음파위성시스템을 위한 개선된 위치추정 알고리즘)

  • Yoon, Kang-Sup
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.775-781
    • /
    • 2011
  • For the measurement of absolute position of mobile robot in indoor environments, the ultrasonic positioning systems using ultrasound have been researched for several years. Most of these ultrasonic positioning systems to avoid interference between the ultrasound are used for sequential transmitting. However, due to the use of sequential transmitting, the positions of transmitter to receive an ultrasound will change when the mobile robot moves. Therefore the accuracy of positioning is reduced. In this paper, the new position estimation algorithm with weighting factor according to the time of receipt is proposed. By applying the proposed algorithm to existing Ultrasonic Satellite System(USAT), the improved USAT is configured. The positioning performance of the improved USAT with the proposed position estimation algorithm are verified by experiments.

Initial Pole Position Estimation of Surface PM-LSM

  • Kim, Tae-Woong;Junichi Watanabe;Sumitoshi Sonoda;Junji Hirai
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The elimination of a pole sensor is desirable due to the low-cost requirement, the compactness, and the applied drives. This paper proposes the algorithm for the initial pole-position estimation of a surface permanent magnet linear synchronous motor (PM-LSM), which is carried out under the closed loop control without a pole sensor and is insensitive to the motor parameters. This algorithm is based on the principle that the initial pole position (IPP) is estimated by the trigonometric function of the two reference currents. The effectiveness of the proposed algorithm is confirmed by testing a surface PM-LSM with large disturbance, which result shows that IPP is well estimated within a satisfied moving-distance and a shorter estimation taken-time even if large disturbance such as cogging and friction is existed.

  • PDF

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

Coordinate Estimation of Mobile Robot Using Optical Mouse Sensors (광 마우스 센서를 이용한 이동로봇 좌표추정)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.716-722
    • /
    • 2016
  • Coordinate estimation is an essential function for autonomous navigation of a mobile robot. The optical mouse sensor is convenient and cost-effective for the coordinate estimation problem. It is possible to overcome the position estimation error caused by the slip and the model mismatch of robot's motion equation using the optical mouse sensor. One of the simple methods for the position estimation using the optical mouse sensor is integration of the velocity data from the sensor with time. However, the unavoidable noise in the sensor data may deteriorate the position estimation in case of the simple integration method. In general, a mobile robot has ready-to-use motion information from the encoder sensors of driving motors. By combining the velocity data from the optical mouse sensor and the motion information of a mobile robot, it is possible to improve the coordinate estimation performance. In this paper, a coordinate estimation algorithm for an autonomous mobile robot is presented based on the well-known Kalman filter that is useful to combine the different types of sensors. Computer simulation results show the performance of the proposed localization algorithm for several types of trajectories in comparison with the simple integration method.

Attitude and Position Estimation of a Helmet Using Stereo Vision (스테레오 영상을 이용한 헬멧의 자세 및 위치 추정)

  • Shin, Ok-Shik;Heo, Se-Jong;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.693-701
    • /
    • 2010
  • In this paper, it is proposed that an attitude and position estimation algorithm based on a stereo camera system for a helmet tracker. Stereo camera system consists of two CCD camera, a helmet, infrared LEDs and a frame grabber. Fifteen infrared LEDs are feature points which are used to determine the attitude and position of the helmet. These features are arranged in triangle pattern with different distance on the helmet. Vision-based the attitude and position algorithm consists of feature segmentation, projective reconstruction, model indexing and attitude estimation. In this paper, the attitude estimation algorithm using UQ (Unit Quaternion) is proposed. The UQ guarantee that the rotation matrix is a unitary matrix. The performance of presented algorithm is verified by simulation and experiment.

An Algorithm for Adjusting Inserting Position and Traveling Direction of a Go-No Gauge Inspecting Eggcrate Assemblies (에그크레이트 검사를 위한 Go-No 게이지의 삽입위치 및 이동방향 보정 알고리즘)

  • 이문규;김채수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2003
  • A machine-vision guided inspection system with go-no gauges for inspecting eggcrate assemblies in steam generators is considered. To locate the gauge at the right place, periodic corrective actions for its position and traveling direction are required. We present a machine vision algorithm for determining inserting position and traveling direction of the go-no gauge. The overall procedure of the algorithm is composed of camera calibration, eggcrate image preprocessing, grid-height adjustment, intersection point estimation between two intersecting grids, and adjustment of position and traveling direction of the gauge. The intersection point estimation is performed by using linear regression with a constraint. A test with a real eggcrate specimen shows the feasibility of the algorithm.

Camera Position Estimation in Castor Using Electroendoscopic Image Sequence (전자내시경 순차영상을 이용한 위에서의 카메라 위치 추정)

  • 이상경;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.49-56
    • /
    • 1991
  • In this paper, a method for camera position estimation in gasher using elechoendoscopic image sequence is proposed. In orders to obtain proper image sequences, the gasser in divided into three sections. It Is presented thats camera position modeling for 3D information extvac lion and image distortion due to the endoscopic lenses is corrected. The feature points are represented with respect to the reference coordinate system below 10 percents error rate. The faster distortion correction algorithm is proposed in this paper. This algorithm uses error table which is faster than coordinate transform method using n -th order polynomials.

  • PDF

Development of a 3D Localization Algorithm Using Hull Geometry Information (선체 형상 정보를 활용한 3차원 위치인식 알고리즘 개발)

  • Mingyu Jang;Jinhyun Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.300-306
    • /
    • 2023
  • A hull-cleaning robot sticks to the surface of a vessel and moves for efficient cleaning. Precise path planning and tracking using the current position is crucial. Many robots rely on the INS algorithm, but errors accumulate. To fix this, GPS, sonar, and USBL are used, though with limitations. Selecting suitable sensors for the surface operation and accurate positioning algorithm are vital. In this study, we developed a robot position estimation algorithm using the structure of a ship. Problems that arise when expanding the 2D position estimation algorithm used in existing wall structures to 3D were evaluated and methods for solving them were proposed. In addition, we aimed to improve performance by deriving singularities that exist in the robot path and proposing an error correction algorithm based on the singularities.

Realization of an estimation algorithm for wafer size grasped by Robot End-Effector (로봇 End-Effector에 의해 파지되는 웨이퍼의 사이즈 추정 알고리즘 구현)

  • 권오진;최성주;조현찬
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.87-90
    • /
    • 2001
  • This paper is concerned with the estimation of a wafer part in grasping system. The estimation of a wafer size in grasping system is very important because a wafer must be placed in accurate position. The accurate information of a wafer size should be forward to Robot in order to place a wafer in accurate position. So in this paper, we decide the size of a wafer with Fuzzy Logic and consider the possibility of this method by simulation.

  • PDF