• Title/Summary/Keyword: Position Error Signal(PES)

Search Result 14, Processing Time 0.03 seconds

Effects of Disk Thickness and Pemto Slider on Position Error Signal for High TPI Hard Disk Drive (고밀도 디스크 드라이브를 위한 디스크 두께와 Pemto 슬라이더가 PES에 미치는 영향)

  • Han Yun-Sik;Lee Ho Seong;Song Yong-Han
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • This paper investigates the effects of disk thickness and Pemto slider on PES(position error signal) for high TPI(track per inch) drives above 150kTPI at early stage of their development. In order to reduce the disk flutter which becomes a dominant contributor to the TMR, the thicker disks with both 63 and 69mi1 have been used. Also, PES of a Pemto slider with thinner thickness than Pico slider has been estimated to decrease the conversion factor of disk motion in axial direction to head off-track motion. A frequency-domain PES estimation and prediction tool has been developed via measurement of disk flutter and HSA(head stack assembly) forced vibration. It has been validated by the measured PES in drive level. Based on the model and measurement of disk flutter, PES of a drive with the thicker disk and Pemto slider is predicted and their impact is investigated.

  • PDF

A TMR Budget Design for 100kTPI Hard Disk Drives Using a Head Gimbal Assembly with Radial Motion Capability (100kTPI급 하드 디스크 드라이브 TMR 설계를 위한 SUSPENSION에 관한 연구)

  • Oh, Dong-Ho;Kang, Seong-Woo;Han, Yun-Sik;Kim, Young-Hoon;Koh, Jeong-Seok;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.140-145
    • /
    • 2002
  • In high-capacity disk drives with ever-growing track density, the allowable level of position error signal (PES) is becoming smaller and smaller. A substantial portion of the PES is caused by disk vibration. This can be reduced by using a head gimbal assemblies (HGAs) that do not confine the slider movement to the vertical direction to disks, but allow movement to the radial direction of disks with respect to disk vibration. Several types of HGAs are proposed for such radial motion of the slider. Experimental results show that the PES levels are reduced by the proposed HGA-design concepts.

  • PDF

Servo Track Writing for Ultra-High TPI Disk Drive in Low Density Medium Condition (초고밀도 디스크 드라이브를 위한 저밀도 작동 환경에서 서보 트랙 기록 방법에 대한 연구)

  • 한윤식;김철순;강성우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.736-741
    • /
    • 2004
  • In high-capacity disk drives with ever-growing track density, the allowable level of position error signal (PES) is becoming smaller and smaller. In order to achieve the high TPI disk drive, it is necessary to improve the writing accuracy during the STW(servo track writing) process through the reduction of TMR sources. Among the main contributors of the NRRO(Non-Repeatable Run-out) PES, the disk vibration and the HSA(head-stack assembly) vibration is considered to be one of the most significant factors. Also the most contributors of RRO(Repeatable Run- out) come from the contributors of NRRO which is written-in at the time of STW(servo track writing) process. In this paper, the experimental test result shows that the effect of NRRO on servo written-in RRO effectively can be reduced through a STW process under low dense medium condition such as semi-vacuum.

  • PDF

A TMR Budget Design for 100kTPI Hard Disk Drives Using a Head Gimbal Assembly with Radial Motion Capability (100 kTPI급 HDD TMR 설계를 위한 Suspension에 관한 연구)

  • D. H. Oh;S. W. Kang;Y. S. Han;Kim, Y. H.;T. Y. Hwang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.320.2-320
    • /
    • 2002
  • In high-capacity disk drives with ever-growing track density, the allowable level of position error signal (PES) is becoming smaller and smaller. A substantial portion of the PES is caused by disk vibration. This can be reduced by using a head gimbal assemblies (HGAs) that do not confine the slider movement to the vertical direction to disks, but allow movement to the radial direction of disks with respect to disk vibration. Several types of HGAs are proposed for such radial motion of the slider. (omitted)

  • PDF

A Study on the PES Estimation for Developing High-TPI HDD (HIGH-TPI HDD 구현을 위한 PES ESTIMATION에 관한 연구)

  • Koh, Jeong-Seok;Kang, Seong-Woo;Han, Yun-Sik;Kim, Young-Hoon;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.122-127
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100 kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. In order to obtain the accurate error transfer function of closed-loop servo control, the plant model is measured by accurate experiment. The measured PES is compared with predicted one in terms of frequency-domain PES spectrum and its standard variation value. It is proved that the proposed frequency-domain PES estimation/prediction method is capable of predicting drive-level PES of high-TPI hard disk drive.

  • PDF

A Study on the PES Estimation for Developing High-TPI HDD (High TPI HDD 구현을 위한 PES Estimation에 관한 연구)

  • J. S. Koh;S. W. Kang;Y. S. Han;Kim, Y. H.;T. Y. Hwang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.319.1-319
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. (omitted)

  • PDF

TMR Contribution Analysis of Spindle-Disk System Vibration for the High-Density Hard Disk Drive of 80GB/Platter (80GB/PLATTER 하드 디스크 드라이브 설계를 위한 스핀들-디스크 시스템 진동의 TMR 기여도 분석)

  • 강성우;한윤식;오동호;황태연;김명업
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.58-64
    • /
    • 2001
  • An investigation of the TMR(Track Misregistration) requirements to achieve the capacity of 80GBytes/Platter in 7200rpm disk drive system is reported. This paper also gives an overview of the PES(Position Error Signal) characteristics in the 57,500TPI disk drive to estimate the required 95,000TPI-system PES. The TMR measured by PES are presented and decomposed in order to identify the portions and their contributions of the spindle-disk system vibration and HSA(Head-Stack-Assembly) system vibration respectively. A comprehensive review on the servo system is also presented to provide the practical limits of the modem servo architecture into TMR budget design. The decomposed PES energy distribution shows that the spindle-disk pack vibration is one of the top-ranking sources of the total TMR budget and its percentage contribution is about 50% considering all the other TMR sources.

  • PDF

Robust and High Performance Control for Optical Disk Drive Systems Using Error based Disturbance Observer

  • Kwangjin Yang;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.2-34
    • /
    • 2001
  • There are many control methods guaranteeing the robustness of systems. Among them, H$\infty$ control, sliding mode control and disturbance observer have been used widely. Especially, disturbance observer(DOB) is one of the most popular methods because it is easy to apply and the cost to pay is low due to its simplicity. Conventional DOB utilizes output signal as a feedback signal. But in Optical Disk Drive(ODD) systems, the Position Error Signal(PES) is the only available one. So conventional DOB is not applicable. If we use error signal in stead of output signal, another form of DOB is made. We call it as Error based Disturbance Observer(EDOB). We show in this paper the difference between two systems, namely conventional DOB system and the EDOB system, and also show the effectiveness of EDOB through experiment.

  • PDF

A New Approach to Servo System Design in Hard Disk Drive Systems

  • Kim, Nam-Guk;Choi, Soo-Young;Chu, Sang-Hoon;Lee, Kang-Seok;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.137-142
    • /
    • 2005
  • In this paper, we propose a new servo system design strategy to reduce the position error signal(PES) and track mis-registration(TMR) in magnetic disk drive systems. The proposed method provides a systematic design procedure based on the plant model and an optimal solution via an optimization with a 'Robust Random Neighborhood Search(RRNS)' algorithm. In addition, it guarantees the minimum PES level as well as stability to parametric uncertainties. Furthermore, the proposed method can be used to estimate the performance at the design stage and thus can reduce the cost and time for the design of the next generation product. The reduction of PES as well as robust stability is demonstrated by simulation and experiments.

  • PDF

Reduction of Disk Vibration and PES Using a Disk Damper (HDD의 DISK 진동감쇠 및 PES 저감을 위한 Disk Damper의 설계와 그 해석)

  • 권정민;강성우;한윤식;황태연;구자춘
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.201-207
    • /
    • 2004
  • High speed rotating airflow inside a HDD chamber causes sub-micron scale disk vibration that could generate significant TMR problems in most of current HDD products. Many publications are presented for the reduction of airflow excitation. One of the most effective methods widely adopted in high-end HDD products is SqueezeAir Bearing Plate (SABP). However, because of its tight assembly clearance between the damper and disk, this method could not be easily implemented in volume production. This article presents a disk damper design that is modified to be feasible for volume production by virtue of a new airflow modeling method.