• Title/Summary/Keyword: Position Dilution of Precision

Search Result 42, Processing Time 0.024 seconds

Performance Analyses of the GPS Receiver for Satellite Launch Vehicles according to Temperature Variation (온도변화에 따른 위성발사체용 GPS 수신기의 성능분석)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.101-108
    • /
    • 2005
  • The GPS(Global Positioning System) receiver for satellite launch vehicles which will be mounted on a launch vehicle can be applied to the flight safety system with its accurately calculated position and velocity data during vehicle's flight. This paper analyzes the performance of the GPS receiver such as SNR(Signal to Noise Ratio), fix mode, position and velocity error, number of visible and tracking satellites, and PDOP(Position Dilution of Precision) under temperature variation which is changed from -34$^{\circ}C$ to +71$^{\circ}C$.

Annual Prediction of Multi-GNSS Navigation Performance in Urban Canyon (도심지역에서의 연도별 다중위성항법 통합성능 예측)

  • Seok, Hyo Jeong;Park, Byung Woon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • In the paper, we predict the number of multi-GNSS satellites and visible satellites with the navigation satellite launch plans and their nominal orbit parameters. Based on the methodology, the multi-GNSS navigation performance and DOP (Dilution of Precision) variation from 2015 to 2020 were forecasted by the Matlab simulation. To calculate the position using the multi-GNSS constellation, we determined the time-offset between the two different systems. Two different algorithms were considered for the sake of time-offset determination; that of each was applied to system level and user side. Also, the results from two algorithms were compared for evaluating each performance. For the reality, we applied the 3D map information to the simulation, which is expected to contribute for predicting the future navigation performance in urban canyon.

Simulating the Availability of Integrated GNSS Positioning in Dense Urban Areas (통합 GNSS 환경에서 도시공간 위성측위의 가용성 평가 시뮬레이션)

  • Suh, Yong-Cheol;Lee, Yang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2007
  • This paper describes the availability of the forthcoming integrated GNSS(Global Navigation Positioning System) positioning that includes GPS(Global Positioning System), Galileo, and QZSS(Quasi-Zenith Satellites System). We built a signal propagation model that identifies direct, multipath, and diffraction signals, using the principles of specular reflection and ray tracing technique. The signal propagation model was combined with 3D GIS(three-dimensional geographic information system) in order to measure the satellite visibility and positioning error factors, such as the number of visible satellites, average elevation of visible satellites, optimized DOP(dilution of position) values, and the portion of multipath-producing satellites. Since Galileo and QZSS will not be fully operational until 2010, we used a simulation in comparing GPS and GNSS positioning for a $1km{\times}1km$ developed area in Shinjuku, Tokyo. To account for local terrain variation. we divided the target area into 40,000 $5m{\times}5m$ grid cells. The number of visible satellites and that of multipath-free satellites will be greatly increased in the integrated GNSS environment while the average elevation of visible satellites will be higher in the GPS positioning. Much decreased PDOP(position dilution of precision) values indicate the appropriate satellite/user geometry of the integrated GNSS; however, in dense urban areas, multipath mitigation will be more important than the satellite/user geometry. Thus, the efforts for applying current technologies of multipath mitigation to the future GNSS environment will be necessary.

Virtual Satellite and Virtual Range Measurement Generation for the GNSS Position Accuracy Improvement (사용자 위치해 정확도 향상을 위한 가상위성 및 가상거리측정값 생성)

  • Song, Choongwon;Ahn, Jongsun;Choi, Moonseok;Jang, JinHyeok;Heo, MoonBeom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.757-765
    • /
    • 2017
  • GNSS (Global Navigation Satellite System) Position Accuracy depends on pseudo-range measurement and DOP (Dilution Of Precision) which indicates about navigation satellite geometry. Pseudo-Range has many error sources such as satellite clock, orbit, ionosphere, troposphere, multipath and so on. For the improvement of the accuracy, user can use corrected pseudo-range in DGPS (Differential Global Positioning System), which is one of the relative positioning methods. But, stationary station is needed in relative positioning. In case of DOP, Signal reception environment is important. If receiver sets in the center of city, it could be interrupted reception by buildings. This environment leads to decrease the number of visible satellites and to increase DOP. This paper proposes the concept of GNSS positioning with virtual satellites which have usable VRM (Virtual Range Measurement). Via virtual satellites and VRM, users could get an accurate position. Especially referred virtual satellites constellation has an effect on vertical error.

Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements

  • Kang, Min-Wook;Won, Jihye;Kim, Mi-So;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The International GNSS Service (IGS) provides the IGS-Real Time Service (IGS-RTS) corrections that can be used in stand-alone positioning in real time. In this study, the positioning accuracy before and after the application of the corrections to broadcast ephemeris by applying the IGS-RTS corrections at code pseudo-range based stand-alone positioning was compared with positioning result using precise ephemeris. The analysis result on IGS-RTS corrections showed that orbit error and clock error were 0.05 m and 0.5 ns compared to precise ephemeris and accuracy improved by about 8.5% compared to the broadcast ephemeris-applied result when the IGS-RTS was applied to positioning. Furthermore, regionally dispersed five observatories were selected to analyze the effect of external environments on positioning accuracy and positioning errors according to location and time were compared as well as the number of visible satellites and position dilution of precision by observatory were analyzed to verify a correlation with positioning error.

A Simulation Study on the Use of GPS Signals to Infer 3-D Atmospheric Wet Refractivity Structure

  • Chiang, Chen-Ching;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1021-1023
    • /
    • 2003
  • Atmospheric water vapor is a key variable in numerical weather prediction (NWP) models, but it is a crucial factor to limit the accuracy of high-precision GPS positioning technique. For both issues, knowledge about the amount of water vapor is extremely important. In this study, we perform a simulation study to utilize GPS signals through a developed tomographic scheme to retrieve 3D structure of atmospheric wet refractivity, which may be assimilated into NWP models for advancing forecasting or position calculation for improving GPS positioning accuracy. For the purpose of knowing the absolute accuracy of the developed tomographic method, a well-defined temporal and spatial varying state of atmospheric profile is utilized. Under such circumstance, several factors that may influence the retrievals can be easily examined and their impacts may be clearly quantified. They include the values of the positional dilution of precision (PDOP) factors of the GPS signals, ... etc. Based upon the use of a variety spectrum of adjustable factors, many interesting findings are obtained. For example, the more is the number of the observed GPS signals the better becomes the retrievals as expected. Also, the smaller is the PDOP value the better becomes the retrievals.

  • PDF

Prediction of eLoran Positioning Accuracy with Locating New Transmitter

  • Han, Younghoon;Park, Sang-Hyun;Seo, Ki-Yeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.53-57
    • /
    • 2017
  • eLoran refers to a terrestrial navigation system using high-power low-frequency signals. Thus, it can be regarded as a positioning, navigation and timing (PNT) system to back up a global navigation satellite system (GNSS) or an alternative to GNSS. South Korea is vulnerable to interference such as GNSS jamming in particular. Therefore, South Korea has made an effort to develop an independent navigation system through eLoran system. More particularly, an eLoran testbed has been developed to be used in the northwest sea area and research on applicability of eLoran in South Korea has been underway. The present study analyzes expected performance of eLoran according to locations of newly built eLoran transmitting stations as part of the eLoran testbed research. The performance of eLoran is analyzed in terms of horizontal position accuracy, and horizontal dilution of precision (HDOP) information was used since it affects accuracy significantly. The target service areas of the eLoran testbed are Incheon and Pyeongtaek Ports, and the required target performance is positioning accuracy of 20 m position within 30 km coverage of the target service area.

A Simulation Based Assessment for Evaluating the Effectiveness of Quasi-Zenith Satellite System

  • Suh, Yong-Cheol;Shibasaki, Ryosuke
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.181-190
    • /
    • 2003
  • Since the operation of the first satellite-based navigation service, satellite positioning has played an increasing role in both surveying and geodesy, and has become an indispensable tool for precise relative positioning. However, in some situations, e.g. at a low angle of elevation, the use of satellites for navigation is seriously restricted because obstacles like buildings and mountains can block signals. As a mean to resolve this problem, the quasi-zenith satellite system has been proposed as a next-generation satellite navigation system. Quasi-zenith satellite is a system which simultaneously deploys several satellites in a quasi-zenith geostationary orbit so that one of the satellites always stay close to the zenith if viewed from a specific point on the ground of East Asia. Thus, if a position measurement function compatible with CPS is installed in the quasi-zenith and stationary satellites, and these satellites are utilized together with the CPS, four satellites can be accessed simultaneously nearly all day long and a substantial improvement in position measurement, especially in metropolitan areas, can be achieved. The purpose of this paper is to evaluate the effectiveness of quasi-zenith satellite system on positioning accuracy improvement through simulation by using precise orbital information of the satellites and a three-dimensional digital map. Through this developed simulation system, it is possible to calculate the number of simultaneously visible satellites and available area for positioning without the need of actual observation. Furthermore, this system can calculate the Dilution Of Precision (DOP) and the error distribution.

A Fusion Positioning System of Long Baseline and Pressure Sensor for Ship and Harbor Inspection ROV

  • Seo, Dong-Cheol;Lee, Yong-Hee;Jo, Gyung-Nam;Choi, Hang-Shoon
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.36-46
    • /
    • 2007
  • The maintenance of a ship is essential for safe navigation and hence regular surveys are prescribed according to the rule of classification societies. A hull inspection is generally performed by professional divers, but it takes a long time and the efficiency is low in terms of time and cost. In this research, a ROV(Remotely Operated Vehicle) named as SNU-ROV(Seoul National University-ROV) is developed to replace the conventional inspection method. In this system, the ROV is intended to be used for inspecting ship and harbor because harbor inspection is merging as a safety measure against any possible terror actions. In order to increase the efficiency of inspection, the ROV must be able to measure the exact position of damages. SNU-ROV has a positioning system based on LBL(Long Base Line). In shallow water such as harbor, however, LBL has bad DOP(Dilution of Precision) in the depth direction due to the limited depth. Thus LBL only can not locate the exact depth position. To solve the DOP problem, a pressure sensor is introduced to LBL and a complementary filter is attached by using indirect feedback Kalman filter. Thus developed positioning system is verified by simulation and experiment in towing tank.

Implementation of GPS/Galileo Integrated Navigation Algorithm and Analysis of Different Time-Coordinate Effect (GPS/Galileo 통합항법알고리즘 구현 및 시각 및 좌표계차이에 따른 영향분석)

  • Song, Jong-Hwa;Jee, Gyu-In;Jeong, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Galileo is the Europe's global navigation satellite system corresponding to the GPS. The GIOVE-A test experiment has been finished and the second test satellite GIOVE-B will be launched soon. The integration of GPS and Galileo lead an increase of visible satellite number. We can obtain an improved navigation performance in signal blocked area such as urban or forest. GPS and Galileo have each time-coordinate system and use the different error model to calculate the navigation solution. In this paper, we studied on GPS and Galileo channel error model and time-coordinate system. Using this result, we implement the integrated navigation algorithm. In simulation, we analyzed the navigation error caused by time and coordinate disagreement and verified performance of integrated navigation algorithm in terms of visible satellite number, DOP(Dilution of Pression) and position error.