• Title/Summary/Keyword: Position Based

Search Result 7,948, Processing Time 0.036 seconds

Stepping motor controlling apparatus

  • Le, Ngoc Quy;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1858-1862
    • /
    • 2005
  • Stepping motor normally operates without feedback and may loss the synchronization. This problem can be prevented by using positional feedback. This paper introduces one method for closed loop control of stepping motor and a method for combining full-step control and micro-step control. This combination controlling apparatus can perform position control with high accuracy in a high speed, so that it will not suffer from vibration (or hunting) problem when stopping motor. Controlling apparatus contains a position counter block for detecting rotor position of stepping motor, a driving block for supplying current to windings of stepping motor, a control block for comparing output signal of position counter block with command position (desired position) and outputting current command signal based on deviation between current position and command position of rotor. To output current command signal, the control block refers to a sine wave data table. This table contains value of duty cycle of Pulse Width Modulation signal. As the second object of this paper, the process of building this data table is also presented.

  • PDF

Algorithm for a Initial Pole Position Estimation of PMLSM (영구자석 선형동기전동기의 초기각 추정 알고리즘)

  • Lee Young-Ho;Choi Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.104-108
    • /
    • 2003
  • This paper explained algorithm for a initial pole position estimation of a permanent magnet linear synchronous motor(PMLSM). Generally this motor is considered initial pole position with a position sensor such as incremental encoder for the precise initial pole position estimation and high performance. But this is based on the principle that the initial pole position is accomplished by the PI controller using the maximum values of a position error generated by the new proposed two reference frames and also by using a rated force for input. the proposed algorithm does not utilize the general methods such as impedance ratio, EMF and using the magnetic saturation. In other words, this can be applied without respect to variety of the motor structure because of insensitivity to the motor parameters. In conclusion, simulation results are presented to confirm performance of initial pole position estimation method.

  • PDF

High Precision Position Synchronous Control in a Multi-Axes Driving System (다축 구동 시스템의 정밀 위치동기 제어(I))

  • Byun, Jung-Hoan;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

Position-Attitude Coupling Motion Using Dual Quaternion in Spacecraft Proximity Operation (듀얼 쿼터니언을 이용한 인공위성 근접운용에서의 위치-자세 결합운동 연구)

  • Na, Yunju;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.795-802
    • /
    • 2019
  • This paper deals with position-attitude coupling motion during spacecraft relative operation, and suggests dual quaternion-based kinematics for the problem. The position-attitude coupling motion can occur when the target point is located at an arbitrary point on the satellite body, not the center of mass. This is especially apparent in close proximity operation case. The dual quaternion-based kinematics directly reflects the angular velocity state, so that the coupling motion in which the change of attitude affects the position can be concisely defined. In this study, a new dual quaternion-based kinematics is presented along with a conventional approach to solve the coupling problem. Numerical simulations show that the position error for the target point is generated by the coupling motion, and verify that the dual quaternion-based kinematics can solve this problem.

Comparison of the Thickness of the Neck Flexor Muscles of Subjects With and Without a Forward Head Posture on the Two Initial Head Positions During Cranio-Cervical Flexion Exercise

  • Jung, Sung-hoon;Kwon, Oh-yun;Choi, Kyu-hwan;Ha, Sung-min;Kim, Su-jung;Jeon, In-cheol;Hwang, Ui-jae
    • Physical Therapy Korea
    • /
    • v.22 no.4
    • /
    • pp.44-50
    • /
    • 2015
  • This study compared the effects of the initial head position (i.e., a HHP versus a relaxed head position) of subjects with and without a FHP on the thickness of the deep and superficial neck flexor muscles during CCF. The study recruited 6 subjects with a FHP and 10 subjects without a FHP. The subjects performed CCF in two different head positions: a HHP, with the head aligned so that the forehead and chin formed a horizontal line, and a relaxed head position (RHP), with the head aligned in a self-selected comfortable position. During the CCF exercise, the thickness of the longus colli (LCo) and the thickness of the sternocleidomastoid (SCM) were recorded using ultrasonography. The thickness of each muscle was measured by Image J software. The statistical analysis was performed with a two-way mixed-model analysis of variance. The thickness of the SCM differed significantly (p<.05) between the subjects with and without FHP. According to a post $h^{\circ}C$ independent t-test, the change in thickness of the SCM increased significantly during CCF in the subjects with FHP while adopting a HHP compared to that in the subjects without FHP. The change in thickness of the SCM was not significantly different between the two positions in subjects without FHP, and there was no significant change in thickness of the LCo muscle during the CCF exercise according to the initial position in both subjects with and without FHP. The results suggest that CCF should be performed in RHP to minimize contraction of the SCM in subjects with a FHP.

Gaze Detection System by IR-LED based Camera (적외선 조명 카메라를 이용한 시선 위치 추적 시스템)

  • 박강령
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.494-504
    • /
    • 2004
  • The researches about gaze detection have been much developed with many applications. Most previous researches only rely on image processing algorithm, so they take much processing time and have many constraints. In our work, we implement it with a computer vision system setting a IR-LED based single camera. To detect the gaze position, we locate facial features, which is effectively performed with IR-LED based camera and SVM(Support Vector Machine). When a user gazes at a position of monitor, we can compute the 3D positions of those features based on 3D rotation and translation estimation and affine transform. Finally, the gaze position by the facial movements is computed from the normal vector of the plane determined by those computed 3D positions of features. In addition, we use a trained neural network to detect the gaze position by eye's movement. As experimental results, we can obtain the facial and eye gaze position on a monitor and the gaze position accuracy between the computed positions and the real ones is about 4.2 cm of RMS error.

Position Information Acquisition Method Based on LED Lights and Smart Device Camera Using 3-Axis Moving Distance Measurement (3축 이동량 측정을 이용한 LED조명과 스마트단말 카메라기반 위치정보 획득 기법)

  • Jung, Soon-Ho;Lee, Min-Woo;Kim, Ki-Yun;Cha, Jae-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.226-232
    • /
    • 2015
  • As the age of smart device has come, recently many application services related to smart phone are developing. The LBS(Location Based Service) technique is considered as one of the most important techniques to support location based application services. Usually the smart phone acquires the information of position by using the position recognition systems and sensors such as GPS(Global Positioning System) and G-Sensor. However, since the GPS signal from the satellite can hardly be received in the indoor environments, new LBS techniques for the indoor environment are required. In this paper, to solve the problem a position information transceiver using LED lights and smart phone camera sensor is proposed. We proved the possibility of the proposed positioning system through the experiments in the laboratory for the practical verification.

Development of a Vision-based Position Estimation System for the Inspection and Maintenance Manipulator of Steam Generator Tubes a in Nuclear Power Plant

  • Jeong, Kyung-Min;Cho, Jae-Wan;Kim, Seung-Ho;Kim, Seung-Ho;Jung, Seung-Ho;Shin, Ho-Chul;Choi, Chang-Whan;Seo, Yong-Chil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.772-777
    • /
    • 2003
  • A vision-based tool position estimation system for the inspection and maintenance manipulator working inside the steam generator bowl of nuclear power plants can help human operators ensure that the inspection probe or plug are inserted to the targeted tube. Some previous research proposed a simplified tube position verification system that counts the tubes passed through during the motion and displays only the position of the tool. In this paper, by using a general camera calibration approach, tool orientation is also estimated. In order to reduce the computation time and avoid the parameter bias problem in an ellipse fitting, a small number of edge points are collected around the large section of the ellipse boundary. Experiment results show that the camera calibration parameters, detected ellipses, and estimated tool position are appropriate.

  • PDF

Design of GPS-aided Dead Reckoning Algorithm of AUV using Extended Kalman Filter (확장칼만필터를 이용한 무인잠수정의 GPS 보조 추측항법 알고리즘 설계)

  • Kang, Hyeon-Seok;Hong, Sung-Min;Sur, Joo-No;Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • This paper introduces a GPS-aided dead reckoning algorithm that asymptotically estimates the heading bias error of a magnetic compass based on geodetic north, improves the position error accumulated by dead reckoning, and helps the estimated position of an AUV to represent a position in the NED coordinate system, by receiving GPS position information when surfaced. Based on the results of a simulation, the locational error was bounded with a modest distance, after estimating the AUV position and heading bias error of the magnetic compass when surfaced. In other words, it was verified that proposed algorithm improves the position error in the NED coordinate system.

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.