• 제목/요약/키워드: Position/Velocity Control

검색결과 646건 처리시간 0.027초

로봇 머니퓰레이터의 정상상태 위치오차를 제거할 수 있는 퍼지제어 알고리듬

  • 강철구;곽희성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.235-240
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic manipulators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller. Three dimensional look-up table is used toreduce the computational time in real-time control, and a technique reducing the amount of necessary memory is introduced. Simulation and experimental studies show that the position errors at the steady state are decreased more than 90% compared to those of existing fuzzy controller when the proposed fuzzy controller is applied to the 2 axis direct drive SCARA robot manipulator.

  • PDF

신경회로망을 이용한 리니어 펄스 모터의 정밀 제어 (Precise Control of a Linear Pulse Motor Using Neural Network)

  • 권영건;박정일
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.987-994
    • /
    • 2000
  • A Linear Pulse Motor (LPM) is a direct drive motor that has good performance in terms of accuracy, velocity and acceleration compared to the conventional rotating system with toothed belts and ball screws. However, since an LPM needs supporting devices which maintain constant air-gap and has strong nonlinearity caused by leakage magnetic flux, friction and cogging, etc., there are many difficulties in improvement on accuracy with conventional control theory. Moreover, when designing the position controller of LPM, the modeling error and load variations has not been considered. In order to compensate these components, the neural network with conventional feedback controller is introduced. This neural network of feedback error learning type changes the current commands to improve position accuracy. As a result of experiments, we observes that more accurate position control is possible compared to conventional controller.

  • PDF

LVQNN을 이용한 공압 로드리스 실린더의 고정도 위치제어 (High accuracy position control of pneumatic rodless cylinder using LVQNN)

  • 표성만;정민화;안경관;이병룡;양순용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1012-1017
    • /
    • 2003
  • The development of a fast, accurate, and inexpensive position-controlled pneumatic actuator that may be applied to a variety of practical positioning applications with various external loads is described in this paper. A novel modified pulso width modulation (MPWM) valve pulsing algorithm allows on/off solenoid valves to be used in place of costly servo valves. A comparison between the system response of standard PWM technique and that of the novel modified PWM technique shows that the control performance is significantly increased. A state feedback controller with position, velocity and acceleration feedback is successfully implemented as the continuous controller. Switching algorithm of control parameter using learning vector quantization neural network (LVQNN) is newly proposed. which estimates the external loads of the pneumatic actuator. The effectiveness of the proposed control algorithms are demonstrated through experiments with various loads.

  • PDF

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

슬라이딩 모드 관측기를 가지는 가변구조제어를 사용한 직접구동용 브러쉬없는 직류전동기의 강인한 위치제어 (A Robust Position Control of a Brushless Direct Drive Motor Using a Variable Structure Control with Sliding Mode Observer)

  • 정세교;홍찬호;이대식;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1041-1043
    • /
    • 1993
  • A robust position control scheme for a Brushless Direct Drive Motor(BLDDM) is presented. To obtain the robustness under the load variation, a Variable Structure Controller(VSC) is used. However, the VSC has a chattering problem and require the full state informations. To overcome this problem, in this paper, the sliding mode observer is used for compensating the load disturbance and estimating the motor velocity. As a result, the VSC for a BLDDM posision control is designed by using only position measurment and the chattering problem is greatly reduced. To show the validaty of the proposed scheme, the simulation study is carried out.

  • PDF

비구면 가공을 위한 공구 경로 제어 알고리즘 (Tool Path Control Algorithm for Aspherical Surface Grinding)

  • 김형태;양해정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.100-103
    • /
    • 2005
  • In this study, tool path control algorithm for aspherical surface grinding was derived and discussed. The aspherical surface actually means contact points between lens and tool. Tool positions are generally defined at the center of a tool, so there is difference between tool path and lens surface. The path was obtained from contact angle and relative position from the contact point. The angle could be calculated after differentiating an aspheric equation and complex algebraic operations. The assumption of the control algorithm was that x moves by constant velocity while z velocity varies. X was normal to the radial direction of lens, but z was tangential. The z velocities and accelerations were determined from current error and next position in each step. In the experiment, accuracy of the control algorithm was checked on a micro-precision machine. The result showed that the control error tended to be diminished when the tool diameter increased, and the error was under sub-micro level.

  • PDF

부하외란을 받는 편로드 유압실린더의 위치제어에 관한 연구 (A Study on Position Control of Hydraulic Single-Rod Cylinder Subjected to Load Disturbance)

  • 윤일로;염만오
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.89-95
    • /
    • 2003
  • A PID controller integrated with a velocity feedback is designed for fluid power elevator model system in this study. In this case, for outside disturbance load a hydraulic cylinder and a pressure control valve are used. In this method overshoot is reduced and settling time becomes also shorter than the values achieved from the PID controller system only In conclusion a PID controller integrated with a velocity feedback is considered a suitable control method for fluid power elevator system.

GPS 정보를 이용한 지능형 차량의 자율 경로추적 제어 (Autonomous Tracking Control of Intelligent Vehicle using GPS Information)

  • 정병묵;석진우;조지승;이재원
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.58-66
    • /
    • 2008
  • In the development of intelligent vehicles, path tracking of unmanned vehicle is a basis of autonomous driving and automatic navigation. It is very important to find the exact position of a vehicle for the path tracking, and it is possible to get the position information from GPS. However the information of GPS is not the current position but the past position because a vehicle is moving and GPS has a time delay. In this paper, therefore, the moving distance of a vehicle is estimated using a direction sensor and a velocity sensor to compensate the position error of GPS. In the steering control, optimal fuzzy rules for the path tracking can be found through the simulation of Simulink. Real driving experiments show the fuzzy rules are good for the steering control and the position error of GPS is well compensated by the proposed estimation method.

소형 자동차고용 3축 Stacker crane 개발에 관한 연구 (A Study on the Development of Small Size Three-Axis Stacker Crane for Automatic Ware House)

  • Kim, J.Y.;Sim, J.K.;Kim, H.S.;Han, J.H.
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.131-139
    • /
    • 1995
  • In this study, small size stacker Crane for automatic ware house and interface circuit is designed and manufactured. IBM-PC is used as a controller. At 50kg$_{f}$ load, optimal motion velocity is 20 mm/min for X and Y axis and 12 mm/min for Z axis. Position fesolution is 0.005 mm and repeatability is .+-. 0.025 mm. Through characteristic experiment, effectiveness of the designed and manufactured stacker crane. PC control program, and design of interface circuit and construction of control system are shown. From these results, the developed stacker crane can be apply to FMS(Flexible Manufacturing System) and FA(Factory Automation) of industrial field.d.

  • PDF

선형 펄스 전동기의 특성 해석 (The Charcteristics Analysis of Linear Pulse Motor)

  • 조윤현;이광호;김성도
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.249-256
    • /
    • 1999
  • This paper describes static characteristics analysis of linear pulse motor(LPM) with two permanent magnets. Linear pulse motors are finding a wide range of application for the Factory-Automation or the Office-Automation. Typically, LPM provides for a reliable and precise control of position, velocity, or acceleration without using a closed-loop system. Some of the advantages of LPMs are ease of control, step multiplication, static and dynamic positioning, and locking force. The flux density and thrust of LPM is computed by the FEM and magnetic equivalent circuits which considered the magnetic nonlinear phenomena. The result of characteristics analysis are shown as the flux, the air gap reluctance and the thrust. The velocity and position characteristics as a function of unit step input is measured. To estimate the unit step response charecteristic of LPM, the simulation results by Matlab and the experimental results is compared.

  • PDF