• 제목/요약/키워드: Portal News

검색결과 103건 처리시간 0.018초

기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론 (Analyzing the Issue Life Cycle by Mapping Inter-Period Issues)

  • 임명수;김남규
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.25-41
    • /
    • 2014
  • 최근 스마트 기기를 통해 소셜미디어에 참여하는 사용자가 급격히 증가하고 있다. 이에 따라 빅데이터 분석에 대한 관심이 높아지고 있으며 최근 포털 사이트에서 검색어로 자주 입력되거나 다양한 소셜미디어에서 자주 언급되는 단어에 대한 분석을 통해 사회적 이슈를 파악하기 위한 시도가 이루어 지고 있다. 이처럼 다량의 텍스트를 통해 도출된 사회적 이슈의 기간별 추이를 비교하는 분석을 이슈 트래킹이라 한다. 하지만 기존의 이슈 트래킹은 두 가지 한계를 가지고 있다. 첫째, 전통적 방식의 이슈 트래킹은 전체 기간의 문서에 대해 일괄 토픽 분석을 실시하고 각 토픽의 기간별 분포를 파악하는 방식으로 이루어지므로, 새로운 기간의 문서가 추가되었을 때 추가된 문서에 대해서만 분석을 추가 실시하는 것이 아니라 전체 기간의 문서에 대한 분석을 다시 실시해야 한다는 실용성 측면의 한계를 갖고 있다. 둘째, 이슈는 끊임 없이 생성되고 소멸될 뿐 아니라, 때로는 하나의 이슈가 둘 이상의 이슈로 분화하고 둘 이상의 이슈가 하나로 통합되기도 한다. 즉, 이슈는 생성, 변화(병합, 분화), 그리고 소멸의 생명주기를 갖게 되는데, 전통적 이슈 트래킹은 이러한 이슈의 가변성을 다루지 않았다는 한계를 갖는다. 본 연구에서는 이러한 한계를 극복하기 위해 대상 기간 전체의 문서를 한꺼번에 분석하는 방식이 아닌 세부 기간별 문서에 대해 독립적인 분석을 수행하고 이를 통합할 수 있는 방안을 제시하였으며, 이를 통해 새로운 이슈가 생성되고 변화하며 소멸되는 전체 과정을 규명하였다. 또한 실제 인터넷 뉴스에 대해 제안 방법론을 적용함으로써, 제안 방법론의 실무 적용 가능성을 분석하였다.

댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측 (Issue tracking and voting rate prediction for 19th Korean president election candidates)

  • 서대호;김지호;김창기
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.199-219
    • /
    • 2018
  • 인터넷의 일상화와 각종 스마트 기기의 보급으로 이용자들로 하여금 실시간 의사소통이 가능하게 하여 기존의 커뮤니케이션 양식이 새롭게 변화되었다. 인터넷을 통한 정보주체의 변화로 인해 데이터는 더욱 방대해져서 빅데이터라 불리는 정보의 초대형화를 야기하였다. 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회로 여겨지고 있다. 특히 텍스트 마이닝은 비정형 텍스트 데이터를 이용해 패턴을 탐구하여 의미있는 정보를 찾아낸다. 텍스트 데이터는 신문, 도서, 웹, SNS 등 다양한 곳에 존재하기 때문에 데이터의 양이 매우 다양하고 방대하여 사회적 실제를 이해하기 위한 데이터로 적합하다. 본 연구는 한국 최대 인터넷 포털사이트 뉴스의 댓글을 수집하여 2017년 19대 한국 대선을 대상으로 연구를 수행하였다. 대선 선거일 직전 여론조사 공표 금지기간이 포함된 2017년 4월 29일부터 2017년 5월 7일까지 226,447건의 댓글을 수집하여 빈도분석, 연관감성어 분석, 토픽 감성 분석, 후보자 득표율 예측을 수행하였다. 이를 통해 각 후보자들에 대한 이슈를 분석 및 해석하고 득표율을 예측하였다. 분석 결과 뉴스 댓글이 대선 후보들에 대한 이슈를 추적하고 득표율을 예측하기에 효과적인 도구임을 보여주었다. 대선 후보자들은 사회적 여론을 객관적으로 판단하여 선거유세 전략에 반영할 수 있고 유권자들은 각 후보자들에 대한 이슈를 파악하여 투표시 참조할 수 있다. 또한 후보자들이 빅데이터 분석을 참조하여 선거캠페인을 벌인다면 국민들은 자신들이 원하는 바가 후보자들에게 피력, 반영된다는 것을 인지하고 웹상에서 더욱 적극적인 활동을 할 것이다. 이는 국민의 정치 참여 행위로써 사회적 의의가 있다.

기업의 빅데이터 투자가 기업가치에 미치는 영향 연구 (The effect of Big-data investment on the Market value of Firm)

  • 권영진;정우진
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.99-122
    • /
    • 2019
  • IDC(International Data Corporation) 사(社)의 최근 보고서에 따르면, 2025년에는 2016년에 생성된 데이터의 10배에 달하는 163제타바이트의 데이터가 생성될 것이고 그 주체의 비중은 소비자에서 기업으로 이동하고 있다고 한다. 이러한 소위 '빅데이터의 물결'은 도래하고 있고 그 파장은 산업 전반적으로 영향을 미칠 것이다. 따라서, 방대한 데이터를 효과적으로 관리하는 것은 기업의 관점에서 그 어느 때보다 더 중요하다. 하지만, IT 투자에 대한 효과를 측정한 선행 연구는 다수 존재함에도 불구하고 빅데이터 투자 효과를 측정한 선행 연구는 거의 전무한 실정이다. 따라서, 해당 투자 효과를 정량적으로 분석한다면 기업의 의사 결정을 도울 수 있을 것이다. 본 연구는 효율적 시장 가설을 이론적 바탕으로 둔 사건연구방법론(Event Study Methodology)을 적용하여, 기업의 빅데이터 투자가 시장 투자자들의 반응에 미치는 영향을 측정하였다. 또한, 보다 심층적으로 이 효과를 분석하기 위해서 5가지 하위 변수를 설정했고 그 내용은 기업 크기 구분, 산업 구분(Finance와 ICT), 투자 구축 완료 구분, 벤더 유무 구분이다. 분석 결과, 91개 기업은 빅데이터 투자 공시 이후 시장 가치가 평균 0.92% 상승한다는 사실을 확인하였다. 특히 Finance 기업, non-ICT 기업, 시가 총액이 작은 기업, 빅데이터 전문 벤더 기업을 통해 투자한 기업, 그리고 빅데이터 시스템이 구축 완료됐다는 공시에 해당하는 기업의 시장 가치가 두드러지게 상승한다는 사실을 알 수 있었다. 본 연구는 빅데이터 투자 효과를 측정한 선행 연구가 거의 전무하다는 점에서 학문적인 의의를 지니고, 빅데이터 투자를 고려 중인 기업 의사 결정자들에게 실질적인 참고 자료가 될 수 있다는 점에서 실무적인 시사점을 갖는다.