• Title/Summary/Keyword: Portable Power

Search Result 583, Processing Time 0.032 seconds

A study on skin temperature distribution of the human body as fundamental data for developing heat energy harvesting clothing (열전에너지 수확 의류를 위한 인체표면 온도분포의 기초적 고찰)

  • Yang, Jin-Hee;Cho, Hyun-Seung;Park, Sun-Hyung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.3
    • /
    • pp.435-444
    • /
    • 2011
  • The development of ubiquitous healthcare technology and portable electronic devices requires new energy sources for providing continuous power supply. This study particularly focuses on an energy harvesting system capable of charging energy using clothing. One of the sources for energy harvesting is heat energy, which is the difference in temperature of the body and the surrounding environment. In this study, the skin temperature distribution of the human body was empirically measured to determine the basic materials needed to develop heat energy harvesting clothing. The distribution of skin temperature in different sections of the human body was analyzed. The analysis found that the skin temperature of the upper body was higher than that of the lower body. The area close to the heart with a lot of blood flow was especially high. The skin temperature of the back side of the body, such as the back of the neck, upper back, and waist, was higher than that of the front side of the body. As for the arms, the skin temperature of the upper arms was higher than that of the lower arms, and the skin temperature of the back side of the arms was lower than that of the front and the flank side of the arms. The difference in the average skin temperature and the environment temperature was highest at the back of the neck, and thereby is considered to be the most appropriate section to integrate the heat energy harvesting function and structure. The following sections had the next highest difference in values, listed in descending order: the back of the waist, the sides of shoulders, the front chest area, the front side of the upper arms, and the front abdomen. Based on the skin temperatures of the different sections of the human body, this study outlines the basic guidelines for developing heat energy harvesting clothing.

  • PDF

The Next Wave in Display Innovation

  • Webster, Steven C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.4-4
    • /
    • 2008
  • The progress in flat panel displays over the last two decades has been astonishing. In just 20 years, the LCD-TV grew up from a 2-inch curiosity, to an industry that will sell about 120 million flat panel TV's this year, with viewing area up to 4000 times larger. That success is based on continuous innovation, especially in manufacturing processes. For the next decade to bring another doubling of the business, progress will need to continue in four major areas: Human factors, ecological impact, visual quality, and of course continued drive towards affordability. This talk will detail the technology advances that can allow this industry to meet those challenges. Human factors. Today, we adapt our lifestyle to our technology. People organize their offices, and their homes, around displays. We pass around mobile phones to share images, rather than experiencing them as a group. Billions of newspapers continue to be sold daily. Advances in flexible displays can lead to large portable displays. "New era projection" includes the handheld Pico Projectors that are already on the market, and will ultimately appear integrated in mobile phones the same way cameras do today. "Eco" impact. Today TV's are one of the top energy consumers in a U.S. home, and the fastest growing. Watching a large flat panel TV can cost twice as much as running a large refrigerator. With today's concern about energy consumption, regulations are starting to emerge worldwide to limit TV electrical use. Fortunately, good solutions exist in using light management films to eliminate bulbs, saving power without increasing cost. Going forward, LED backlights will drive another step downward. OLED displays might be the ultimate solution. Visual quality. The color of an LCD-TV is still often considered inferior to a far less expensive CRT. And almost all displays suffer from representing a three-dimensional world on a two dimensional surface. The technology to improve color is available today, and will likely move from premium sets into the mainstream as costs come down. 3D is now arriving in movie theaters worldwide, and that will drive up the demand for similar realistic images in home theaters. And the technology is emerging today for 3D representation to move beyond specialized applications into everyday use, on screens large and small. Affordability. The world takes cost-down miracles for granted in consumer electronics. Each of these other advances will be balanced with a drive for affordability, especially as the market grows in emerging countries. The other three challenges must be met without increasing cost. Putting this all together, the next few years will emphasize "eco friendly" designs, and enhanced images such as 3D. By 2013 we will start to see serious penetration by emissive technologies (OLED, high efficiency plasma, or other), with the "ultimate display" likely not in the market for a decade. Lots of opportunities for innovation remain ahead of us.

  • PDF

Bit Assignment for Wyner-Ziv Video Coding (Wyner-Ziv 비디오 부호화를 위한 비트배정)

  • Park, Jong-Bin;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.128-138
    • /
    • 2010
  • In this paper, we propose a new bit assignment scheme for Wyner-Ziv video coding. Distributed video coding (DVC) is a new video coding paradigm which enables greatly low complexity encoding because it does not have any motion prediction module at encoder. Therefore, it is very well suited for many applications such as video communication, video surveillance, extremely low power consumption video coding, and other portable applications. Theoretically, the Wyner-Ziv video coding is proved to achieve the same rate-distortion (RD) performance comparable to that of the joint video coding. However, its RD performance has much gap compared to MC-DCT-based video coding such as H.264/AVC. Moreover, Transform Domain Wyner-Ziv (TDWZ) video coding which is a kind of DVC with transform module has difficulty of exact bit assignment because the entire image is treated as a same message. In this paper, we propose a feasible bit assignment algorithm using adaptive quantization matrix selection for the TDWZ video coding. The proposed method can calculate suitable bit amount for each region using the local characteristics of image. Simulation results show that the proposed method can enhance coding performance.

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.

An Efficient Buffer Page Replacement Strategy for System Software on Flash Memory (플래시 메모리상에서 시스템 소프트웨어의 효율적인 버퍼 페이지 교체 기법)

  • Park, Jong-Min;Park, Dong-Joo
    • Journal of KIISE:Databases
    • /
    • v.34 no.2
    • /
    • pp.133-140
    • /
    • 2007
  • Flash memory has penetrated our life in various forms. For example, flash memory is important storage component of ubiquitous computing or mobile products such as cell phone, MP3 player, PDA, and portable storage kits. Behind of the wide acceptance as memory is many advantages of flash memory: for instances, low power consumption, nonvolatile, stability and portability. In addition to mentioned strengths, the recent development of gigabyte range capacity flash memory makes a careful prediction that the flash memory might replace some of storage area dominated by hard disks. In order to have overwriting function, one block must be erased before overwriting is performed. This difference results in the cost of reading, writing and erasing in flash memory[1][5][6]. Since this difference has not been considered in traditional buffer replacement technologies adopted in system software such as OS and DBMS, a new buffer replacement strategy becomes necessary. In this paper, a new buffer replacement strategy, reflecting difference I/O cost and applicable to flash memory, suggest and compares with other buffer replacement strategies using workloads as Zipfian distribution and real data.

Thermo-Chemical Analysis of a Calcination Furnace to Produce Cathode Material for the Secondary Batteries (이차전지 양극활물질 제조용 소성로의 열화학적 해석)

  • Hwang, Min-Young;Kim, Yong-Gyun;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Yong-Tae;Chang, Youn-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Lithium secondary batteries have been widely used in the portable electric devices as power source. Recently it is expected that the realm of its applications expands to the markets such as energy storage medium of hybrid electric vehicle(HEV), electric vehicle(EV). Cathode active material is crucial in terms of performance, durability, capacity of lithium secondary batteries. It is urgent to develope the technology for mass production of cathode material to cope with the markets' demands in the near future. In this study, a calcination furnace running in real production line is modelled in 3D, and the thermal flow and gas flow after chemical reaction in the furnace is analyzed through numerical computations. Based on the results, it is shown that large volume of $CO_2$ gas is generated from chemical reaction. High concentration of $CO_2$ gas and it's stagnation is clearly found from the reactant containers in which the reaction occur to the bottom area of the furnace. It is also studied that 15% or more $CO_2$ mol fraction could affect to proper formation of $LiCoO_2$ through TGA-DSC analysis. The solutions to evacuate carbon dioxide from the furnace are suggested through the change of furnace design and operating condition as well.

Design of Bias Circuit for Measuring the Multi-channel ISFET (다채널 ISFET 측정용 단일 바이어스 회로의 설계)

  • Cho, Byung-Woog;Kim, Young-Jin;Kim, Chang-Soo;Choi, Pyung;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1998
  • Multi-channel sensors can be used to increase the reliability and remove the random iloise in ion-sensitive field effect transistors(ISFETs). Multi-channel sensors is also an essential step toward potential fabrication of sensors for several ionic species in one device. However, when the multi-channel sensors are separately biased, the biasing problems become difficult, that is to say, the bias circuit is needed as many sensors. In this work, a circuit for biasing the four pH-ISFETs in null-balance method, where bias voltages are switched, was proposed. The proposed concept is need only one bias circuit for the four sensors. Therefore it has advantages of smaller size and lower power consumption than the case that all sensors are separately biased at a time. The proposed circuit was tested with discrete devices and its performance was investigated. In the recent trend, sensor systems are implemented as portable systems. So the verified measurement circuit was integrated by using the CMOS circuit. Fortunately, ISFET fabrication process can be compatible with CMOS process. Full circuit has a mask area of $660{\mu}m{\times}500{\mu}m$. In the future, this step will be used for developing the smart sensor system with ISFET.

  • PDF

Micro fluxgate magnetic sensor using multi layer PCB process (PCB 다층 적층기술을 이용한 마이크로 플럭스게이트 자기 센서)

  • Choi, Won-Youl;Hwang, Jun-Sik;Choi, Sang-On
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.72-78
    • /
    • 2003
  • To observe the effect of excitation coil pitch on the micro fluxgate magnetic sensor, two sensors are fabricated using multi layer board process and the pitch distance of excitation coil are $260\;{\mu}m$ and $520\;{\mu}m$, respectively. The fluxgate sensor consists of five PCB stack layers including one layer of magnetic core and four layers of excitation and pick-up coils. The center layer as magnetic core is made of a Co-based amorphous magnetic ribbon with extremely high DC permeability of ${\sim}100,000$ and has a rectangular-ring shape to minimize the magnetic flux leakage. Four outer layers as excitation and pick-up coils have a planar solenoid structure and are made of copper foil. In case of the fluxgate sensor having the excitation coil pitch of $260\;{\mu}m$, excellent linear response over the range of $-100\;{\mu}T$ to $+100\;{\mu}T$ is obtained with sensitivity of 780 V/T at excitation sine wave of $3V_{p_p}$ and 360 kHz. The chip size of the fabricated sensing element is $7.3\;{\times}\;5.7\;mm^2$. The very low power consumption of ${\sim}8\;mW$ is measured. This magnetic sensor is very useful for various applications such as: portable navigation systems, telematics, VR game and so on.

Development of a Raman Lidar System for Remote Monitoring of Hydrogen Gas (수소 가스 원격 모니터링을 위한 라만 라이다 시스템 개발)

  • Choi, In Young;Baik, Sung Hoon;Park, Nak Gyu;Kang, Hee Young;Kim, Jin Ho;Lee, Na Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.166-171
    • /
    • 2017
  • Hydrogen gas is a green energy sources because it features no emission of pollutants during combustion. But hydrogen gas is very dangerous, being flammable and very explosive. Hydrogen gas detection is very important for the safety of a nuclear power plant. Hydrogen gas is generated by oxidation of nuclear fuel cladding during a critical accident, and leads to serious secondary damage in the containment building. This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas. A small, portable Raman lidar system was designed, and a measurement algorithm was developed to quantitatively measure hydrogen gas concentration. To verify the capability of measuring hydrogen gas with the developed Raman lidar system, experiments were carried out under daytime outdoor conditions by using a gas chamber that can adjust the hydrogen gas density. As results, our Raman lidar system is able to measure a minimum density of 0.67 vol. % hydrogen gas at a distance of 20 m.

A Micro Fluxgate Magnetic Sensor with Closed Magnetic Path (폐자로를 형성한 마이크로 플럭스게이트 자기 센서)

  • 최원열;황준식;강명삼;최상언
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.19-23
    • /
    • 2002
  • This paper presents a micro fluxgate magnetic sensor in printed circuit board (PCB). In order to observe the effect of the closed magnetic path, the magnetic cores of rectangular-ring and two bars were each fabricated. Each fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a Co-based amorphous magnetic ribbon with extremely high DC permeability of ~100,000. Four outer layers as an excitation and pick-up coils have a planar solenoid and are made of copper foil. In case of the fluxgate sensor having the rectangular-ring shaped core, excellent linear response over the range of -100 $\mu$T to + 100 $\mu$T is obtained with 540 V/Tsensitivity at excitation square wave of 3 $V_{p-p}$ and 360 KHz. The chip size of the fabricated sensing element is $7.3 \times 5.7\textrm{mm}^2$. The very low power consumption of ~8 mW was measured. This magnetic sensor is very useful for various applications such as: portable navigation systems, telematics, VR game and so on.n.

  • PDF