• Title/Summary/Keyword: Porphyrin derivative

Search Result 14, Processing Time 0.017 seconds

Ultrafast Time-Resolved Laser Spectroscopic Studies of trans-Bis(ferrocene-carboxylato)(tetraphenyl-porphyrinato)tin(IV): Intramolecular Electron-Transfer Dynamics

  • Jang, Joon-Hee;Kim, Hee-Jung;Kim, Hee-Joon;Kim, Chul-Hoon;Joo, Tai-Ha;Cho, Dae-Won;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1967-1972
    • /
    • 2007
  • Photophysical properties of a newly-synthesized porphyrin derivative, trans-bis(ferrocene carboxylato)- (5,10,15,20-tetraphenylporphyrinato)tin(IV) [Sn(TPP)(FcCOO)2] were investigated by means of steady-state and fs-time resolved laser spectroscopic techniques, and compared with those of a standard molecule, trans-dichloro( 5,10,15,20-tetraphenyl-porphrinato)tin(IV) [Sn(TPP)Cl2]. The fluorescence spectrum of Sn(TPP)- (FcCOO)2 was observed to exhibit dual emission bands originating from the S2-state and the S1-state, which was greatly quenched as compared to those of Sn(TPP)Cl2. The fs-time resolved fluorescence and transient absorption spectroscopic measurements revealed that the fluorescence quenching is due to formation of the long-lived charge transfer state by intramolecular electron transfer from ferrocene to the S2-excited SnTPP in addition to the enhanced non-radiative deactivation processes.

Inhibition of Proliferation of Human Fibroblast by δ-Aminolevulinic Acid (ALA) Derivatives through the Induction of Mitochondria Membrane Depolarization (δ-Aminolevulinic acid (ALA) 유도체들의 미토콘드리아 탈분극 유도에 의한 인간 섬유아세포의 세포분열 억제)

  • Jun, Yong-woo;Han, Du-Gyeong;Lee, Jin-A;Jo, Su-Yeon;Jang, Deok-Jin
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.313-318
    • /
    • 2015
  • ${\delta}$-Aminolevulinic acid (ALA) is an endogenous metabolite formed in the mitochondria from succinyl-CoA and glycine, and plays a key role in the living body as an intermediate of the compound in the porphyrin biosynthesis pathway. ALA has been commonly used in photodynamic therapy for several years, because ALA is of interest as a biodegradable mediator, a growth regulator, and an effective agent used in dermatology. Here, we determined which ALA derivatives were the most effective for the inhibition of the cell proliferation and growth of human fibroblast. As a result, we found that the treatment of ALA derivatives including ALA, ALAP (ALA phosphate salt), MAL (Methyl 5-aminolevulinate hydrochloride salt), PBGL (phophobilinogen lactam) and PBGH (phophobilinogen-HCl) could attenuate cell proliferation of human fibroblast cells. Among them, PBGH was the most effective derivative. In addition, PBGH treatment could induce mitochondrial membrane depolarization, leading to cell death of human fibroblast. These results suggest that mitochondrial membrane depolarization induced by ALA and PBGH treatment might be responsible for inhibition of cell proliferation and death. Taken together, our results propose the possibility that PBGH can be used as one of the effective drugs in human skin disease, psoriasis.

Isolation and Structure Identification of Photosensitizer from Perilla frutescens Leaves Which Induces Apoptosis in U937 (들깻잎(Perilla frutescens)으로부터 U937 세포에 apoptosis를 유도하는 광과민성 물질의 분리 및 구조동정)

  • Ha, Jun Young;Kim, Mi Kyeong;Lee, Jun Young;Choi, Eun Bi;Hong, Chang Oh;Lee, Byong Won;Bae, Chang Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we tried to separate the photosensitizer that induces apoptosis of leukemia cells (U937) from perilla leaves. Perilla leaves (Perilla frutescens Britt var. japonica Hara) are a popular vegetable in Korea, being rich in vitamins (A and E), GABA, and minerals. Dried perilla leaves were extracted with methanol to separate the photosensitizer by various chromatographic techniques. The structure of the isolated compound (PL9443) was identified by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. Absorbance of the UV-Vis spectrum was highest at 410 nm and was confirmed by the 330, 410, and 668 nm. PL9443 compound was determined to be pheophorbide, an ethyl ester having a molecular weight of 620. It was identified as a derivative compound of pheophorbide structure when magnesium comes away from a porphyrin ring. Observation of morphological changes in U937 cells following cell death induced by treated PL9443 compound revealed representative phenomena of apoptosis only in light irradiation conditions (apoptotic body, vesicle formation). Results from examining the cytotoxicity of PL9443 substance against U937 cells showed that inhibition rates of the cell growth were 99.9% with the concentration of 0.32 nM PL9443. Also, the caspase-3/7 activity was 99% against U937 cells with the concentration of 0.08 nM of PL9443 substance. The result of the electrophoresis was that a DNA ladder was formed by the PL9443. The PL9443 compound is a promising lead compound as a photosensitizer for photodynamic therapy of cancer.

Isolation and Identification of a Photosensitizer from Pueraria thunbergiana Leaves that Induces Apoptosis in SK-HEP-1 Cells (P. thunbergiana 잎으로부터 SK-HEP-1세포에 대한 apoptosis를 유도하는 광과민성물질의 분리 및 구조동정)

  • Lee, Jun Young;Kim, Mi Kyeong;Ha, Jun Young;Kim, Yong Gyun;Hong, Chang Oh;Kim, So Young;Kim, Chung-Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.242-251
    • /
    • 2014
  • The objective of this study was to isolate a photosensitizer from Pueraria thunbergiana leaves that induces apoptosis in SK-HEP-1 cells. Column chromatography and thin layer chromatography were used to isolate active compounds from extracts of P. thunbergiana leaves. The structures of the isolated compounds were determined by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. A substance, named M4-3, was purified from the leaves of P. thunbergiana using various chromatography methods, and the absorbance of the substance was measured. The absorbance was highest at 410 nm, suggesting that the M4-3 substance was a different compound from chlorophyll a and b, which absorb at 410, 502, 533, and 607 nm. Further analyses revealed that the M4-3 compound was a $13^2$-hydoxy pheophorbide, a methyl ester with a molecular weight of 662. M4-3 was identified as a derivative compound of pheophorbide, with a structure that magnesium comes away from the porphyrin ring. The results of the analysis of the cytotoxicity of the M4-3 substance against the SK-HEP-1 cells revealed that it inhibited rates of cell growth by 40% and 80% at a concentration of 0.04 ${\mu}M$ and 0.08 ${\mu}M$, respectively. The M4-3 compound was found to be a photosensitizer for cytotoxicity because it was appeared only in light condition as examining activity in different irradiation conditions (light condition and nonlight condition) under the same concentration. Analysis of morphological changes in the cells following cell death induced by exposure to the M4-3 substance reveled representative phenomena of apoptosis (nuclear condensation, vesicle formation, and fragmentation of DNA). The induction of apoptosis was attributed to the compound's photodynamic activity.