• 제목/요약/키워드: Porous surface

검색결과 1,500건 처리시간 0.028초

다공질 콘크리트를 이용한 식생용 콘크리트 특성 - 다공질 콘크리트의 물리화학적 특성을 중심으로 - (The Properties of Concretes for Planting Vegetations Based on Porous Concretes)

  • 구본학;김용규
    • 한국환경복원기술학회지
    • /
    • 제2권2호
    • /
    • pp.62-69
    • /
    • 1999
  • This study was carried out to find out the capability of applying such materials as porous concrete, could be called environmentally friendly materials, for bringing vegetations. For verying the purpose of the experiments such materials as potland cement and slag cement, coarse aggravates(${\phi}25mm$, ${\phi}18mm$, ${\phi}13mm$) were mixed. In the voids of porous concrete peatmoss and chemical fertilizers were filled, and on the surface of concrete organic soils were adhered for seeding grasses. For testing compressive strength, pH, voids the 12($4mixed{\times}3times$) specimens were manufactured. As results, the compressive strength of porous concretes were from 59 to $267kg/cm^2$ depend on mixed ratios between cements and coarse aggregates. Voids of concrete were from 33% to 40% and the pH were varied pH 8-10.5. So the capability of planting vegetations was to be ascertained. The germination and growth of grasses were not good, but it could be found out that the capability of vegetations on the concretes. For generalizing these results and applying on the construction sites, it is necessary to verificate following studies for various conditions.

  • PDF

응축충격파와 경계층 간섭의 피동제어(II) (A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(II))

  • 최영상;권순범;김병지
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.329-340
    • /
    • 1997
  • A passive control of interaction of condensation shock wave / boundary layer for reducing the strength of condensation shock was conducted experimentally in a 2.5 * 8 cm$^{2}$ indraft type supersonic wind tunnel. The effects of following factors on passive control were investigated: 1) the thickness of porous wall, 2) the diameter of porous hole, and 3) the orientation of porous hole. On the other hand, the location of nonequilibrium condensation region and condensation shock wave was controlled by regulation of the stagnation conditions. Surface static pressure measurements as well as Schlieren observations of the flow field were obtained, and their effects were compared with the results the cases of without passive control. It was found that thinner porous wall, smaller porous hole and FFH orientation for the same cavity size and porosity of 12% are more favourable than the cases of its opposite.

Growth and Characterization of GaN on Sapphire and Porous SWCNT Using Single Molecular Precursor

  • Sekar, P.V. Chandra;Lim, Hyun-Chul;Kim, Chang-Gyoun;Kim, Do-Jin
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.268-272
    • /
    • 2011
  • Due to their novel properties, GaN based semiconductors and their nanostructures are promising components in a wide range of nanoscale device applications. In this work, the gallium nitride is deposited on c-axis oriented sapphire and porous SWCNT substrates by molecular beam epitaxy using a novel single source precursor of $Me_2Ga(N_3)NH_2C(CH_3)_3$ with ammonia as an additional source of nitrogen. The advantage of using a single molecular precursor is possible deposition at low substrate temperature with good crystal quality. The deposition is carried out in a substrate temperature range of 600-750$^{\circ}C$. The microstructural, structural, and optical properties of the samples were analyzed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and photoluminescence. The results show that substrate oriented columnar-like morphology is obtained on the sapphire substrate while sword-like GaN nanorods are obtained on porous SWCNT substrates with rough facets. The crystallinity and surface morphology of the deposited GaN were influenced significantly by deposition temperature and the nature of the substrate used. The growth mechanism of GaN on sapphire as well as porous SWCNT substrates is discussed briefly.

석회질 다공성 필터 제조 및 SOx 제거 특성 (Preparation of Porous Lime Filters and SOx Removal Characteristics)

  • 이광희;박재구;김현중
    • 한국대기환경학회지
    • /
    • 제20권2호
    • /
    • pp.153-159
    • /
    • 2004
  • This study was focused on evaluating physical properties and SO$_{x}$ removal capability of porous lime filters prepared by a foaming and a gelcasting method. Porosities of lime filters ranged from 55% to 85%, and their mean pore sizes were about 95 ${\mu}{\textrm}{m}$. It was observed that porous lime filters had the continuous pore structure that most pores were inter-connected by many windows. Before SO$_{x}$ removal reaction a surface of porous lime filters was made up of calcium oxide, but after reaction calcium sulfate became a main component. The SO$_{x}$ removal efficiency and the conversion ratio of calcium oxide to calcium sulfate increased according to reaction temperature and porosity. At 100$0^{\circ}C$, SO$_{x}$ removal efficiency of filters was always over 98% regardless of the porosity. In case of the filter with the porosity of 85%, the conversion ratios of calcium oxide increased according to the reaction temperature, and they were in the range 30% to 60%. to 60%.

전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조 (Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion)

  • 박제신;김원백;서창열;안종관;김병규
    • 한국분말재료학회지
    • /
    • 제15권3호
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).

친환경 도로포장용 투수콘크리트의 제조와 이를 이용한 도로포장시스템의 수질정화특성 (Development of Environmentally Favorable Porous Concrete and Water Purification Characteristics by the Pavement System)

  • 홍종현;김문훈;양철신
    • 한국환경과학회지
    • /
    • 제15권11호
    • /
    • pp.1045-1052
    • /
    • 2006
  • Stormwater pollution is a major problem in urban areas. Pollutants like heavy metals and harmful chemicals in the runoff can endanger soil and ground water, when they are not sufficiently removed doting infiltration. Strength and infiltration capacity of porous concrete are the major problems that must be considered if permeable pavement system are demanded to be used in a drive way application. In this study, a series of compacted porous concrete mixtures and the system of pavement ate tested for the physical characteristics like compressive strength, flexural strength, unit weight, porosity, water permeability, and the purification capacity of contaminated water. The test results obtained indicate that the strength and infiltration capacity of porous concrete are strongly related to its matrix proportion and compaction energy and providing adequate filter layers underneath pavement surface course is one of the most important design considerations of permeable pavement system for pollution retention purpose.

A Volatile Organic Compound Sensor Using Porous Co3O4 Spheres

  • Kim, Tae-Hyung;Yoon, Ji-Wook;Lee, Jong-Heun
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.134-138
    • /
    • 2016
  • Porous $Co_3O_4$ spheres with bimodal pore distribution (size: 2-3 nm and ~ 30 nm) were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Co-acetate and polyethylene glycol (PEG), while dense $Co_3O_4$ secondary particles with monomodal pore distribution (size: 2-3 nm) were prepared from the spray solution without PEG. The formation of mesopores (~ 30 nm) was attributed to the decomposition of PEG. The responses of a porous $Co_3O_4$ sensor to various indoor air pollutants such as 5 ppm $C_2H_5OH$, xylene, toluene, benzene, and HCHO at $200^{\circ}C$ were found to be significantly higher than those of a commercial sensor using $Co_3O_4$ and dense $Co_3O_4$ secondary particles. Enhanced gas response of porous $Co_3O_4$ sensor was attributed to high surface area and the effective diffusion of analyte gas through mesopores (~ 30 nm). Highly sensitive porous $Co_3O_4$ sensor can be used to monitor various indoor air pollutants.

상분리법에 의한 다공질 유리막의 제조 (Preparation of Porous Glass Membranes by the Phase-Separation Technique)

  • 현상훈;최봉호
    • 한국세라믹학회지
    • /
    • 제25권1호
    • /
    • pp.59-65
    • /
    • 1988
  • To develop porous glass membranes used for a effective membrane-separation process, porous glasses and glass membranes were prepared from the sodium borosilicate parent glass by the phaseseparation technique and effects of heat-treatment and leaching conditions on their characteristics were investigated. The crack-free glass membranes could be fabricated from the 9.4 Na2-O-30.7 B2O3-59.2 SiO2-0.7 Al2O3(wt%) parent glass by heat-treatment at the lower temperature(550-570$^{\circ}C$) and for longer than 45 hrs for the phase separation, followed by leaching with 3N-HCl+60% ethylene glycol solution at 90$^{\circ}C$ over 25 hrs. Porous glasses prepared in this work showed large specific surface areas(400㎡/g) and narrow pore size distribution with the mean pore radius of 14${\AA}$ enough for the application as reverse osmosis membranes. The salt-rejection efficiency and product-flux of the glass membranes heat-treated at 570$^{\circ}C$ for 80 hrs were found to be 51.8% and 270cc/㎡. hr, respectively. This result suggests that the porous glass membranes fabricated in this study could be applied for the reverse osmosis process.

  • PDF

Evaluation of Humidity Control Ceramic Paint Using Gypsum Binder

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.74-79
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than those of bentonite and zeolite. It was effective to add white cement as well as a retarding agent to control the setting time of the ceramic paint. As the amount of added porous materials increases, the specific surface area and total pore volume of ceramic paint increase, but the average pore diameter decreases. The addition of porous materials having a high specific area and a large pore volume improves the moisture absorptive and desorptive performance of the ceramic paint. Therefore, in this experiment, the moisture absorptive and desorptive properties were best when active clay was added. Also, as the added amount of porous materials increases, the moisture absorptive and desorptive properties improve. In this experiment, when 70 mass% of active clay was added to ceramic paint, the hygroscopicity was highest at about $80g/m^2$.

양극산화법으로 제작된 나노 다공성 주석 산화물 박막 (Nano Porous Tin Oxide Film Fabricated by Anodization)

  • 문규식;천세준;노희규;천승철;박성용;이로운;박용준;최원열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.328-328
    • /
    • 2007
  • $SnO_2$ has a high potential for electric and electronic applications. We have anodized pure tin metal and nano porous tin oxide film was obtained on pure Sn. Nano porous tin oxide were grown by anodization in nonaqueous-base electrolytes at different potentials between 5 V and 100 V. Pore size of ~100nm was observed by FE-SEM. Pore sizes as a function of applied voltage and anodizing time were characterized. We obtained nano porous tin oxide film having an uniform pore size at low temperature. High specific surface area of $SnO_2$ will be very useful for gas sensor, lithium battery, and dye sensitized solar cell.

  • PDF