• Title/Summary/Keyword: Porous structures

Search Result 511, Processing Time 0.027 seconds

Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core

  • Assie, Amr;Akbas, Seref D.;Kabeel, Abdallah M.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.79-90
    • /
    • 2022
  • In this study, the dynamic behavior of functionally graded layered deep beams with viscoelastic core is investigated including the porosity effect. The material properties of functionally graded layers are assumed to vary continuously through thickness direction according to the power-law function. To investigate porosity effect in functionally graded layers, three different distribution models are considered. The viscoelastically cored deep beam is exposed to harmonic sinusoidal load. The composite beam is modeled based on plane stress assumption. The dynamic equations of motion of the composite beam are derived based on the Hamilton principle. Within the framework of the finite element method (FEM), 2D twelve -node plane element is exploited to discretize the space domain. The discretized finite element model is solved using the Newmark average acceleration technique. The validity of the developed procedure is demonstrated by comparing the obtained results and good agreement is detected. Parametric studies are conducted to demonstrate the applicability of the developed methodology to study and analyze the dynamic response of viscoelastically cored porous functionally graded deep beams. Effects of viscoelastic parameter, porosity parameter, graduation index on the dynamic behavior of porous functionally graded deep beams with viscoelastic core are investigated and discussed. Material damping and porosity have a significant effect on the forced vibration response under harmonic excitation force. Increasing the material viscosity parameters results in decreasing the vibrational amplitudes and increasing the vibration time period due to increasing damping effect. Obtained results are supportive for the design and manufacturing of such type of composite beam structures.

Analytical and finite element method for the bending analysis of the thick porous functionally graded sandwich plate including thickness stretching effect

  • Imad Benameur;Youcef Beldjelili;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.593-605
    • /
    • 2023
  • This work presents a comparison between analytical and finite element analysis for bending of porous sandwich functionally graded material (FGM) plates. The plate is rectangular and simply supported under static sinusoidal loading. Material properties of FGM are assumed to vary continuously across the face sheets thickness according to a power-law function in terms of the volume fractions of the constituents while the core is homogeneous. Four types of porosity are considered. A refined higher-order shear with normal deformation theory is used. The number of unknowns in this theory is five, as against six or more in other shear and normal deformation theories. This theory assumes the nonlinear variation of transverse shear stresses and satisfies its nullity in the top and bottom surfaces of the plate without the use of a shear correction factor. The governing equations of equilibrium are derived from the virtual work principle. The Navier approach is used to solve equilibrium equations. The constitutive law of the porous FGM sandwich plate is implemented for a 3D finite element through a subroutine in FORTRAN (UMAT) in Abaqus software. Results show good agreement between the finite element model and the analytical method for some results, but the analytical method keeps giving symmetric results even with the thickness stretching effect and load applied to the top surface of the sandwich.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서 (Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures)

  • 윤성도;명윤;나찬웅
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발 (Development of Nano Ceramic Structures for HEPA Type Breathing Wall)

  • 김종원;안영철;김길태
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.

Shear correction factors of a new exponential functionally graded porous beams

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Tarek Merzouki;AhmedAmine Daikh;Aman Garg;Abdelouahed Tounsi;Mohamed A. Eltaher;Mohamed-Ouejdi Belarbi
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.1-11
    • /
    • 2024
  • This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porosity-dependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensatesfor the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner's analysis, particularly when transitioning from the two-dimensional case (plate) to the one-dimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changesin FG beams without porosity and the SCF by comparing them with available results.

Self-Assembled Chiral Structures of Discoid Organic Molecule on Au(111)

  • Kim, Ji-Hoon;Khang, Se-Jong;Kwon, Young-Kyun;Park, Yongsup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.280-280
    • /
    • 2013
  • Using both experimentaland theoretical methods, we have investigated the structural and electronic properties of self-assembled two-dimensional organic molecule (hexaaza-triphenylene-hexacarbonitrile, HATCN), which is used as an efficient OLED hole injection material, on Au(111) surfaces. Low-temperature scanning tunneling microscope (STM) measurements revealed that self-assembled linear and hexagonal porous structures are formed at atomic steps and terraces of Au(111), respectively. We also found that the hexagonal porous structure have chirality and forms only small (<1,000 nm2) phase-separated chiral domains that can easily change their chiral phase in subsequence STM images at 80 K. To explain these observations, we calculated the molecular-molecular and molecule-surface interaction energies by using first-principles density functional theory method. We found that the change of their chiral phase resulted from the competition between the two energies. These results have not only verified our experimental observations, but also revealed the delicate balance between different interactions that caused the self-assembed structures at the surface.

  • PDF

다공성 세라믹(${\alpha}-Al_{2}O_{3}$)를 이용한 지중 매설형 기준전극 (The Development of Buried Type Reference Electrode Using Porous Ceramic(${\alpha}-Al_{2}O_{3}$))

  • 배정효;하윤철;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.145-147
    • /
    • 2005
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential due to stray current of subway system. So, we have developed the Real-time Wireless Remote Monitoring System for Stray Current of Subway System. In this system, the permanent buried type reference electrode is necessary. In this paper, results of development of buried type reference electrode using porous ceramic$({\alpha}-Al_{2}O_{3})$ are presented.

  • PDF

Fabrication of High Permeable Nanoporous Carbon-SiO$_2$ Membranes Derived from Siloxane-containing Polyimides

  • Kim, Youn Kook;Han, Sang Hoon;Park, Ho Bum;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.16-23
    • /
    • 2004
  • The silica containing carbon (C-SiO$_2$) membranes were fabricated using poly(imide siloxane) (PIS) having -CO- swivel group. The characteristics of porous C-SiO$_2$ structures prepared by the pyrolysis of poly(imide siloxane) were related with the micro-phase separation between the imide block and the siloxane block. Furthermore, the nitrogen adsorption isotherms of the CMS and the C-SiO$_2$ membranes were investigated to define the characteristics of porous structures. The C-SiO$_2$ membranes derived from PIS showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures, while the CMS membranes derived from PI showed the type I isotherm. For the molecular sieving probe, the C-SiO$_2$ membranes pyrolyzed at 550, 600, and 700$^{\circ}C$ showed the O$_2$ permeability of 924, 1076, and 367 Barrer (1 ${\times}$ 10$\^$-10/㎤(STP)cm/$\textrm{cm}^2$$.$s$.$cmHg) and O$_2$/N$_2$ selectivity of 9, 8, and 12.