• Title/Summary/Keyword: Porous silica

Search Result 222, Processing Time 0.031 seconds

PDMS (Polydimethylsilioxane)-Coated Silica Nanoparticles for Selective Removal of Oil and Organic Compound from Water

  • Cho, Youn Kyoung;Kim, Dae Han;Yoon, Hye Soo;Jeong, Bora;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.257-257
    • /
    • 2013
  • In order to selectively remove oil and organic compound from water, silica nanoparticles with hydrophobic coating was used. Since silica nanoparticles are generally hydrophilic, removal efficiency of oil and organic compound, such as toluene, in water can be decreased due to competitive adsorption with water. In order to increase the removal efficiency of oil and toluene, hydrophobic polydimethylsiloxane (PDMS) was coated on silica nanoparticles in the form of thin film. Hydrophobic property of the PDMS-coated silica nanoparticles and hydrophilic silica nanoparticles were easily confirmed by putting it in the water, hydrophilic particle sinks but hydrophobic particle floats. PDMS coated silica nanoparticles were dispersed on a slide glass with epoxy glue on and the water contact angle on the surface was determined to be over $150^{\circ}$, which is called superhydrophobic. FT-IR spectroscopy was used to check the functional group on silica nanoparticle surface before and after PDMS coating. Then, PDMS coated silica nanoparticles were used to selectively remove oil and toluene from water, respectively. It was demonstrated that PDMS coated nanoaprticles selectively aggregates with oil and toluene in the water and floats in the form of gel and this gel remained floating over 7 days. Furthermore, column filled with hydrophobic PDMS coated silica nanoparticles and hydrophilic porous silica was prepared and tested for simultaneous removal of water-soluble and organic pollutant from water. PDMS coated silica nanoparticles have strong resistibility for water and has affinity for oil and organic compound removal. Therefore PDMS-coated silica nanoparticles can be applied in separating oil or organic solvents from water.

  • PDF

Mechanical Properties of 2-D Silica-Silica Continuous Fiber-reinforced Ceramic-matrix Composite Fabricated by Sol-Gel Infiltration

  • Kim, Ha-Neul;Kim, Dong-Jun;Kang, Eul-Son;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.391-396
    • /
    • 2009
  • 2-dimensional silica-silica Continuous Fiber-reinforced Ceramic.matrix Composites (CFCCs) were fabricated by a sol-gel infilitration method that has a changing processing condition, such as the repetitions of infilitration. In order to investigate the relationship between the processing condition and the mechanical properties of composites, the mechanical properties of specimens were measured by means of a 4-point flexural strength test while the evidence of strength degradation were microstructurally characterized. There seemed to be a minimum density value that existed at which the delamination between the fabrics would not occur. In the case that the density of silica CFCCs exceeded 1.55 g/$cm^3$, the flexural strength also exceeded approximately 18 MPa at least. By applying the Minimum Solid Area (MSA) analysis of the porous structure, the correlation between the relative density and the mechanical properties of composites will be discussed.

Preparation of Porous Anti-Insect Repellent Powder Using Spray Drying of Medicinal Herbal Extracts Anti-Insect Repellent Silica Sol (분무건조법을 이용한 한약추출물 해충기피 실리카 졸의 다공성 방충입자의 제조)

  • Park, Hee Young;Hwang, KiSeob;Kim, Jung-Hyeon;Lee, Jun-Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.549-556
    • /
    • 2015
  • Anti-insect repellent silica sol from mixture with silica and anti-insect repellent solution extracted from medicinal herbs was prepared. The micron size porous sphere powder with anti-insect repellent solution was prepared by the spray drying method. The characteristic of anti-insect repellent powder using spray drying method was analyzed by FE-SEM, PSA, TGA with the concentration of anti-insect repellent sol (anti-insect repellent solution and silica) and conditions of spray drier. The average particle size of 4, 7 wt% and 10 wt% of anti-insect repellent sol concentration were 8.3, $9.5{\mu}m$ and $11.7{\mu}m$, respectively. The particle size is increasing with high concentration of anti-insect repellent sol. Other hands, particle size as the temperature of inlet nozzle and velocity of sol injection were nearly same at high velocity of gas injection. Also, Anti-insect repellent impregnation in porous sphere powder were confirmed by TGA methode and its thermal property was stable up to $200^{\circ}C$. We expect that anti-insect repellent powder is applied for plastic compound and process of film manufacture.

Effect of Water Volume and Relaxation Time in the Design of Nano Shock Absorbing Damper Using Silica Particle (실리카 분말을 이용한 나노 충격완화 장치의 설계에서 작동 유체 영향과 복원 시간에 대한 연구)

  • 문병영;김병수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.286-292
    • /
    • 2003
  • In this study, new shock absorbing system was proposed using silica gel particles according to the nano-technology. For the design and real application of the proposed damper, an experimental investigations are carried out using colloidal damper, which is statically loaded. The porous matrix is composed from silica gel(labyrinth architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis were described. Iufluence of the water volume and particle diameters upon the reversible colloidal damper hysteresis was investigated. Also, influence of the relaxation time on the hysteresis of the damper was investigated. As a result, the proposed new shock absorbing damper is proved as an effective one, which can be replaced for the conventional hydraulic damper.

Avantor® ACE® Wide Pore HPLC Columns for the Separation and Purification of Proteins in Biopharmaceuticals (바이오의약품의 단백질 분리 및 정제를 위한 Avantor® ACE® 와이드 포어 HPLC 컬럼 가이드)

  • Matt James;Mark Fever;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.3.1-3.7
    • /
    • 2024
  • The article discusses the critical role of chromatography in the analysis and purification of proteins in biopharmaceuticals, emphasizing the importance of comprehensive characterization for ensuring their safety and efficacy. It highlights the use of Avantor® ACE® HPLC columns for the separation and purification of proteins, focusing on the analysis of intact proteins using reversed-phase liquid chromatography (RPLC) with fully porous particles. This article also details the application of different mobile phase additives, such as TFA and formic acid, and emphasizes the advantages of using type B ultra-pure silica-based columns for efficiency and peak shape in biomolecule analysis. Additionally, it addresses the challenges of analyzing intact proteins due to slow molecular diffusion and introduces the concept of solid-core (or superficially porous) particles, emphasizing their benefits over traditional porous particles for the analysis of therapeutic proteins. Furthermore, it discusses the development of Avantor® ACE® UltraCore BIO columns, specifically designed for the high-efficiency separation of large biomolecules, such as proteins, and demonstrates their effectiveness in achieving high-resolution separations, even for higher molecular weight proteins like monoclonal antibodies (mAbs). In addition, it underscores the complexity of analyzing and characterizing intact protein biopharmaceuticals, requiring a range of analytical techniques and the use of wide-pore stationary phases, operated at elevated temperatures and with relatively shallow gradients. It highlights the comprehensive range of options offered by Avantor® ACE® wide pore columns, including both fully porous and solid-core particles, bonded with a variety of complementary stationary phase chemistries to optimize selectivity during method development. The use of ultrapure and highly inert base silica is emphasized for enabling the use of lower concentrations of mobile phase modifiers without compromising analyte peak shape, particularly beneficial for LC-MS applications. Then the article concludes by emphasizing the significance of reversed-phase liquid chromatography and its compatibility with mass spectrometry as a valuable tool for the separation and analysis of intact proteins and their closely related variants in biopharmaceuticals.

  • PDF

Study on Synthesis of Dimethyl Ether Using Silica Membrane Reactor (Silica막 반응기를 이용한 Dimethyl Ether 합성에 관한 연구)

  • Sea Bongkuk;Youn Min-Young;Lee Kew-Ho
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.330-337
    • /
    • 2005
  • Water selective silica membranes were prepared fur use as membrane reactor for synthesis of dimethyl ether (DME) by methanol dehydration. Silica membranes formed on a Porous SUS tube by ultrasonic spray Pyrolysis (USP) and chemical vapor deposition (CVD) using tetraethoxysilane (TEOS) as precursor. The CVD-derived membranes formed higher level of trade-off line between water permeance and water/methanol selectivity than that of the USP-derived membranes. The membrane reactor possessing water permeance of $1.2\times10^{-7}\;mol\;{\cdot}\;m^{-2}\;{\cdot}\;S^{-1}\;{\cdot}\;Pa^{-1}$ and water/methanol selectivity of 10 exhibited increase in methanol conversion of about $20\%$ comparing to conventional reactor system. These findings led us to conclude that the dehydration membrane reactor simultaneously separating the water vapour produced in the reaction zone was effective in increasing the reaction conversion.

Synthesis and surface characterization of mesoporous carbon for the adsorption of methane gas (메탄가스 흡착을 위한 메조포러스 카본 합성과 표면 특성 연구)

  • Park, Sang-Won;Lee, Kamp-Du;Noh, Min-Soo
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.837-845
    • /
    • 2013
  • This study was designed to synthesize mesoporous carbon, porous carbonic material and to characterize its surface in an attempt to adsorption methane gas($CH_4$). Synthesis of mesoporous carbon was carried out under two steps ; 1. forming a RF-silica complex with a mold using CTMABr, a surfactant, and TEOS, raw material of silica, and 2. eliminating silica through carbonization and HF treatment. The mesoporous carbon was synthesized under various conditions of synthesis time and calcination. Eight different types of mesoporous carbon, which were designated as MC1, MC2, MC3, MC4, MCT1, MCT2, MCT3, and MCT4, were prepared depending upon preparation conditions. The analysis of mesoporous carbon characteristics showed that the calcination of silica stabilized the mixed structure of silica and carbonic complex, and made the particle uniform. The results also showed that hydrothermal synthesis time did not have a strong influence on the size of pore. The bigger specific surface area was obtained as the hydrothermal synthesis time was extended. However, the specific surface area was getting smaller again after a certain period of time. In adsorption experiments, $CH_4$ was used as adsorbate. For the case of $CH_4$, MCT3 showed the highest adsorption efficiency.

Hydrogen purification using membrane reactors

  • Barbieri, Giuseppe;Bernardo, Paola;Drioli, Enrico;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.21-24
    • /
    • 2003
  • Methane steam reforming (MSR) was studied in a membrane reactor (MR) with a Pd-based and a porous alumina membranes. MRs showed methane conversion higher than that foresaw by the thermodynamic equilibrium for a traditional reactor (TR). Silica membranes prepared at KRICT were characterized with permeation tests on single gases ($N_2$, $H_2$ and $CH_4$). These silica membranes can be also used for high temperature applications such as $H_2$ separation $CO_2$ hydrogenation for methanol production is another reaction where $H_2O$ selective removal can be performed with these silica membranes.

  • PDF

Fabrication of Hollow Metal Microcapsules with Mesoporous Shell Structure: Application as Efficient Catalysts Recyclable by Simple Magnetic Separation

  • Jang, Da-Young;Jang, Hyung-Gyu;Kim, Gye-Ryung;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3274-3280
    • /
    • 2011
  • Monodispersed porous NiO and $Co_3O_4$ microcapsules with a hollow core were synthesized using SBA-16 silica sol and PS as a hard template. The porous hollow microcapsules were characterized by XRD, TEM and $N_2$ adsorption/desorption analysis. After $H_2$ reduction of metal oxide microspheres, they were conducted as an active catalyst in the reduction of chiral butylronitrile and cyanobenzene. The mesoporous metals having a hollow structure showed a higher activity than a nonporous metal powder and an impregnated metal on the carbon support.