• Title/Summary/Keyword: Porous shell

Search Result 89, Processing Time 0.021 seconds

Preparation of Core-Shell Structured Iron Oxide/Graphene Composites for Supercapacitors Application (코어-쉘 구조의 산화철/그래핀 복합체 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.65-72
    • /
    • 2018
  • Core-shell structured $Fe_3O_4/graphene$ composites were synthesized by aerosol spray drying process from a colloidal mixture of graphene oxides and $Fe_3O_4$ nanoparticles. The structural and electrochemical performance of $Fe_3O_4/graphene$ were characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanometric discharge-charge method. Core-shell structured $Fe_3O_4/GR$ composites were synthesized in different mass ratios of $Fe_3O_4$ and graphene oxide. The composite particles were around $3{\mu}m$ in size. $Fe_3O_4$ nanoparticles were encapsulated with a graphene. Morphology of the $Fe_3O_4/graphene$ composite particles changed from a spherical ball having a relatively smooth surface to a porous crumpled paper ball as the content of GO increased in the composites. The $Fe_3O_4/GR$ composite fabricated at the weight ratio of 1:4 ($Fe_3O_4:GO$) exhibited higher specific capacitance($203F\;g^{-1}$) and electrical conductivity than as-fabricated $Fe_3O_4/GR$ composite.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

Preparation and Characterization of Core/Shell-type Ag/Chitosan Nanoparticles with Antibacterial Activity

  • Lin, Yue;Jing, Wang;Kang, Pan;Xiaoming, Zhang;Zhouping, Wang;Wenshui, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1277-1281
    • /
    • 2011
  • Making use of chitosan (CS) and ethylenediaminetetraacetic acid (EDTA) as a reaction system, CS-EDTA nanoparticles were synthesized through a facile counterion complex coacervation method. $Ag^+$ could enter porous CS nanoparticles synthesized with this method, allowing Ag nanoparticles within chitosan nanoparticles were synthesized by reducing silver nitrate with chitosan. Because of the noncovalent interaction between CS and EDTA, the EDTA could be easily removed via dialysis against water, and pure core/shell-type Ag/CS nanoparticles could be obtained. The nanoparticles showed higher antibacterial activity toward E. coli than the active precursor Ag nanoparticles and CS.

Nonlinear free and forced vibrations of oblique stiffened porous FG shallow shells embedded in a nonlinear elastic foundation

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.33-46
    • /
    • 2024
  • The present research delves into the analysis of nonlinear free and forced vibrations of porous functionally graded (FG) shallow shells reinforced with oblique stiffeners, which are embedded in a nonlinear elastic foundation (NEF) subjected to external excitation. Two distinct types of PFG shallow shells, characterized by even and uneven porosity distribution along the thickness direction, are considered in the research. In order to model the stiffeners, Lekhnitskii's smeared stiffeners technique is implemented. With the stress function and first-order shear deformation theory (FSDT), the nonlinear model of the oblique stiffened shallow shells is established. The strain-displacement relationships for the system are derived via the FSDT and utilization of the von-Kármán's geometric assumptions. To discretize the nonlinear governing equations, the Galerkin method is employed. The model such developed allows analysis of the effects of the stiffeners with various angles as desired, in addition to the quantitative investigation on the influence of the surrounding nonlinear elastic foundations. To numerically solve the problem of vibrations, the 4th-order P-T method is used, as this method, known for its enhanced accuracy and reliability, proves to be an effective choice. The validation of the present research findings includes a comprehensive comparison with outcomes documented in existing literature. Additionally, a comparative analysis of the numerical results against those obtained using the 4th Runge-Kutta method is performed. The impact of stiffeners with varying angles and material parameters on the vibration characteristics of the present system is also explored. The researchers and engineers working in this field may use the results of this study as benchmarks in their design and research for the considered shell systems.

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park;Sun Hyu Kim;Jeong-Hoon Yu;Ji Eun Kwon;Ji Yang Lim;Si Won Choi;Jong-Sung Yu;Yongju Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.198-206
    • /
    • 2024
  • Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.

A Study on the Water-Purification Characteristics of Bio-Composite Planting Blocks (바이오 복합 식생블록의 수질정화 특성 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Choi, Joong-Dae;Kim, Ki-Sung;Seo, Ji-Yeon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.75-82
    • /
    • 2011
  • This study was performed to evaluate the water purification properties of bio-composites planting blocks using oyster shell and effective microorganism that have high absorption ability of heavy metals and organics to develop environmentally friendly river embankment technique contained various factors such as oyster shells, effective microorganism, porous concrete and planting embankment block. To maximize greening effect, the seeds were arbitrarily sown. In addition, in order to analyze the effect of water quality purification after the planting, the samples were collected from each designated zone 1, 7 and 30 days after steeping in water. Then, the samples were analyzed in terms of seven test items such as SS, BOD, COD, T-N, T-P, pH, etc. on the basis of the test method for water pollution. The following conclusions were reached from the test result. As a result of analysis for water quality purification for the concrete block containing the effective microorganism, it was found that the values for SS, BOD, T-N and T-P for the sample taken after 30 days were lower than the initial values, which indicated that the water purification effect had been created. The result of the water quality purification analysis for the concrete block containing oyster shell showed that the values for SS, BOD, COD and T-P for the sample taken after 30 days were lower than the initial values which also indicated that it had been effective in water quality purification.

Evaluation of Antimicrobial Activity of Allyl Isothiocyanate (AITC) Adsorbed in Oyster Shell on Food-borne Bacteria

  • Han, Jung-Ho;Ahmed, Raju;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. To make practical use of unused oyster shells, calcined oyster shell (COS) collected from a local company was allowed to adsorb AITC (allyl isothiocyanate), and then tested the powder's ability to inhibit the growth of some potential food borne disease-causing bacteria. COS powder showed bacteriostatic effect that inhibited cell growth of Escherichia coli, Staphylococcus aureus and Salmonella typhimurium from 3 to 5 log10 CFU/mL at concentrations around 1%. The MIC of pure AITC was found as 1 mg/mL, 0.8 mg/mL and 0.7 mg/mL for Escherichia coli, Staphylococcus aureus and Salmonella typhimurium, respectively. The calcined powder adsorbed about 225 mg of AITC per gram of shell, indicating porous material was created by calcination. FTIR data confirmed the adsorption of AITC by COS. Characterization of particle data showed very fine particle size and highly convoluted surface. AITC adsorbed calcined oyster shell (ACOS) completely inhibited bacterial cell at 1% concentration. ACOS showed better antibacterial effect than COS, indicating synergistic effect of AITC and calcined oyster shell powder on bacteria.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

Neutralization and removal of heavy metal ions in Plating wastewater utilizing Oyster Shells (굴껍질을 이용한 도금폐수의 중화 및 중금속 이온 제거)

  • 성낙창;김은호;김정권;김형석
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.81-87
    • /
    • 1996
  • The purpose of this research is to examine the utilization of oyster shells for neutralization and removal of heavy metal ions in plating wastewater, because oyster shells have been known to be very porous, to have high specific surface area and to have alkaline minerals such as calcium and magnesium. The results obtianed from this research showed that oyster shells had a buffer capacity to neutralize an acidic.alkali system in plating wastewater. Generally, it could be showed that the removal efficiencies of heavy metal ions were very influenced by reaction times and oyster shell dosages. In point of ocean waste, if oyster shells substituted for a valuable adsorbent such as actviated carbon, they could look forward to an expected economical effect.

  • PDF

Surface Modification of MgO Microcrystals by Cycles of Hydration-Dehydration

  • 김해진;강진;송미영;박선회;박동곤;권호진;남상성
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.786-790
    • /
    • 1999
  • Relatively inert surface of microcrystalline MgO was modified into chemically active one by carrying out controlled hydration followed by dehydration at elevated temperature under dynamic vacuum. Even though the treatment by the first cycle of hydration-dehydration did not alter the porosity of MgO, it largely enhanced surface reactivity of the MgO toward adsorbed water, turning its outer layer into brucite upon rehydration. Treatment by the second cycle of hydration-dehydration generated micropores, and slit-shaped mesopores, raising the porosity of the MgO. The overlayer of Fe2O3 of the core/shell type composite magnesium oxide enhanced this surface modification, turning its surface into more porous and more active one than that of uncoated MgO, after the treatment by the hydration-dehydration.