• Title/Summary/Keyword: Porous rock

Search Result 81, Processing Time 0.015 seconds

In situ Fractionation Due to Gas Pipe Growth in Basaltic Lava Flows (현무암질 용암류 내에서 가스 파이프 성장에 따른 원위치 분화작용)

  • Soyeon Kim;Cheolwoo Chang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.3
    • /
    • pp.87-109
    • /
    • 2024
  • Two kinds of basaltic outcrop consisting of vesicular gas-pipe and the host massive basalt were observed in the Taeheung-ri area of Namwon-eup, Jeju Island. This is clear evidence of the magmatic differentiation of lava flows after an eruption. Although the petrographic study revealed that both parts contained the same mineral phases such as olivine, clinopyroxene, and plagioclases with accessory alkaline feldspar, and titanite, their contents and compositions are more evolved in the vesicular gas-pipe. Its anorthite and wollastonite contents in plagioclase and clinopyroxene, respectively, are lower than those of the host massive basalt. The whole-rock XRF analysis indicates that vesicular gas-pipe had lower MgO content and higher CaO, Al2O3, P2O5, Fe2O3, Na2O, TiO2, SiO2, and K2O contents than those of the host massive basalt. Both parts of basalt are classified as tholeiite in the TAS diagram, but the former is plotted in a more differentiated area with higher SiO2 content than the latter. Large ion lithophile elements are enriched in both types of basalt, but the enrichment is more conspicuous in the former. Rare earth elements are more abundant n porous gas-pipe than in the host massive basalt. In particualr light rare earth elements are highly enriched in both types of basalt ralative to those of chondrite, indicating typical ocean island basalts (OIBs). These findings indicate that the magma differentiation possibly occurred after an eruption, which can be explained by the gas-driven filter-pressing.