• 제목/요약/키워드: Porous microstructure

검색결과 309건 처리시간 0.023초

직접 발포법을 이용해 제조된 실리카 흄-SiO2계 다공성 세라믹의 열적 특성 (Thermal properties of silica fume-SiO2 based porous ceramic fabricated by using foaming method)

  • 하태완;강승구;김강덕
    • 한국결정성장학회지
    • /
    • 제31권4호
    • /
    • pp.182-189
    • /
    • 2021
  • 무기질 단열재 개발을 위해 포말법을 이용하여 다공성 세라믹스를 제조하였다. 실리카 흄과 SiO2를 주 원료로 사용하였으며, 다공성 세라믹의 균일한 기공 형성을 위한 첨가제로 벤토나이트를 사용하였다. 다공성 세라믹은 1200℃에서 소결하였으며, 기공율, 밀도, 압축강도, 미세구조 그리고 열전도도 분석을 수행하였다. 다공성 세라믹은 SiO2에 대한 실리카흄의 함량이 70~90 % 증가할수록 비중이 0.63에서 0.69로 증가하였으며, 압축강도는 9.41 Mpa에서 12.86 Mpa로 증가하였다. 그러나, 기공율은 비중과 반대로 72.07 %에서 70.82 %로 감소하는 경향을 나타내었다. 열전도도 측정 결과, 실리카 흄의 함량이 70 %인 F7S3 다공성 세라믹의 경우 25~800℃ 온도조건에서 0.75~0.72 W/m·K의 열전도도를 나타내었으며, 실리카 흄의 함량이 90 %인 F9S1 다공성 세라믹의 경우 0.66~0.86 W/m·K를 나타내어 실리카 흄 함량이 적을수록 낮은 열전도도를 나타내었다. 이는 기공율 결과와 일치한 것을 확인하였다. SEM(Scanning Electron Microscope)을 이용한 미세구조 분석 결과, 다공성 세라믹 내/외부에 전체적으로 수십~수백 ㎛ 범위 기공이 관찰되었으며 기공 분포가 비교적 균일한 것을 확인할 수 있었다.

Microstructure and Biocompatibility of Porous BCP(HA/β-TCP) Biomaterials Consolidated by SPS Using Space Holder

  • Woo, Kee-Do;Kwak, Seung-Mi;Lee, Tack;Oh, Seong-Tak;Woo, Jeong-Nam
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.449-453
    • /
    • 2016
  • $HA(hydroxyapatite)/{\beta}-TCP$ (tricalcium phosphate) biomaterial (BCP; biphasic calcium phosphate) is widely used as bone cement or scaffolds material due to its superior biocompatibility. Furthermore, $NH_4HCO_3$ as a space holder (SH) has been used to evaluate feasibility assessment of porous structured BCP as bone scaffolds. In this study, using a spark plasma sintering (SPS) process at 393K and 1373K under 20MPa load, porous $HA/{\beta}-TCP$ biomaterials were successfully fabricated using $HA/{\beta}-TCP$ powders with 10~30 wt% SH, TiH2 as a foaming agent, and MgO powder as a binder. The effect of SH content on the pore size and distribution of the BCP biomaterial was observed by scanning electron microscopy (SEM) and a microfocus X-ray computer tomography system (SMX-225CT). The microstructure observations revealed that the volume fraction of the pores increased with increasing SH content and that rough pores were successfully fabricated by adding SH. Accordingly, the cell viabilities of BCP biomaterials were improved with increasing SH content. And, good biological properties were shown after assessment using Hanks balanced salt solution (HBSS).

Curing Behavior of Phenolic Resin with Humid Atmosphere on The Porous $ZrO_2$ ceramics

  • 윤상현;김장훈;김주영;이준태;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • The effects of relative humidity on the properties of the porous $ZrO_2$ ceramics were investigated in terms of the curing behavior of phenolic resin as a binder. The $ZrO_2$ powders containing 5wt% of phenolic resin were conditioned in a consistent chamber condition at a temperature of $50^{\circ}C$ and different humidity levels (25, 50, 75, and 95%) for 1 h. The exposure of humid atmosphere caused changes of density and microstructure in the green bodies. The higher level the powders were exposed to the humid atmosphere, the lower green density was obtained and the more irregular microstructure was observed due to aggregation by the curing of phenolic resin. After firing, the porosity of specimens has risen from 35.7% to 38.1% and Young's modulus has declined in response to the variation of green density. These results could be explained by the degree of resin cure which was associated with the area under the exothermic peak enclosed by a baseline of DSC thermogram curve. Also, the curing behavior of phenolic resin according to relative humidity has been confirmed by decrease of ether groups which have interacted with the phenolic-OH group and the hexamine as a curing agent. Consequently, it could be demonstrated that increase the relative humidity during fabrication of porous $ZrO_2$ diminished the compaction and properties of specimens after firing owing to curing of phenolic resin.

  • PDF

TiH2/camphene 슬러리의 동결건조 및 열처리에 의한 Ti 계 다공체의 제조 (Fabrication of Porous Ti by Freeze-Drying and Heat Treatment of TiH2/Camphene Slurries)

  • 서한길;김영도;석명진;오승탁
    • 한국재료학회지
    • /
    • 제23권6호
    • /
    • pp.339-343
    • /
    • 2013
  • Porous Ti-systems with unidirectionally aligned channels were synthesized by freeze-drying and a heat treatment process. $TiH_2$ powder and camphene were used as the source materials of Ti and sublimable vehicles, respectively. Camphene slurries with $TiH_2$ content of 10 and 15 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was heat-treated at $1100^{\circ}C$ for 1 h in a nitrogen and air atmosphere. XRD analysis revealed that the samples composed of TiN and $TiO_2$ phase were dependent on the heat-treatment atmosphere. The sintered samples showed large pores of about 120 mm which were aligned parallel to the camphene growth direction. The internal wall of the large pores had relatively small pores with a dendritic structure due to the growth of camphene dendrite depending on the degree of nucleation and powder rearrangement in the slurry. These results suggest that a porous body with an appropriate microstructure can be successfully fabricated by freeze-drying and a controlled sintering process of a camphene/$TiH_2$ slurry.

Effects of Matrix Material Particle Size on Mullite Whisker Growth

  • Hwang, Jinsung;Choe, Songyul
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.313-319
    • /
    • 2021
  • Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 ℃, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 ℃. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75 % when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체 (Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength)

  • 김규헌;김태림;김동현;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심 (Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content)

  • 송인혁;박미정;김해두;김영욱;배지수
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

리튬이차전지용 다공성 Si-Ge-Al계 음극활물질의 전기화학적 특성 (Effects of Porous Microstructure on the Electrochemical Properties of Si-Ge-Al Base Anode Materials for Li-ion Rechargeable Batteries)

  • 조충래;김명근;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.24-28
    • /
    • 2017
  • Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.

유리연마슬러지를 사용한 다공성 소재의 미세구조 및 물리적 특성에 관한 연구 (Microstructure and Physical Properties of Porous Material Fabricated from a Glass Abrasive Sludge)

  • 추용식;권춘우;이종규;심광보
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.277-283
    • /
    • 2006
  • A porous material with a surface layer was fabricated from glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents and compacted into precursors. These precursors were sintered in the range of $700-900^{\circ}C$ for 20 min. The sintered porous materials had a surface layer with smaller pores and inner parts with larger pores. The surface layer and closed pores controlled water absorption. As the expanding agent fraction and the sintering temperature increased, the porosity and pore size increased. The porous materials with $Fe_2O_3$ and graphite as the expanding agents had a low absorption ratio of about 3% or lower while the porous material with $CaCO_3$ as the expanding agent had a higher absorption ratio and more open pores.