• 제목/요약/키워드: Porous media flow model

검색결과 114건 처리시간 0.028초

PEMFC 가습기 용 다공성 중공사막의 물전달 모델링 (Modeling of Water Transport in Porous Membrane for PEMFC Humidifer)

  • 황준영;박지용;강경태;김종훈;김경주;이무석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.96.2-96.2
    • /
    • 2011
  • Water transport through the microporous membrane was modeled considering capillary condensation as well as capillary flow in porous media as a function of pore diameter and relative humidity at the surface. The present model was adopted by the numerical simulation of non-isothermal, non-homogenous flow in a shell and tube typed gas to gas membrane humidifier for PEMFC (proton exchange membrane fuel cell) and the result shows good agreement with experimental data.

  • PDF

다공질 유동해석을 위한 Darcy-Weisbach 관계식의 확장 (Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis)

  • 신창훈;박원규
    • 대한기계학회논문집B
    • /
    • 제41권4호
    • /
    • pp.229-238
    • /
    • 2017
  • 본 연구는 다양한 기하학적 특성을 갖는 다공성 매질의 투과도를 유동조건의 변화와 상관없이 적절히 해석할 수 있는 일반화된 투과도 관계식을 도출하고자 시작되었다. 이에 우선, Darcy-Weisbach 관계식 (Darcy's 마찰유동관계식)의 다공질 유동에의 적용방안을 검토하였다. 결과적으로, Kozeny와 Carman 등의 선행연구를 바탕으로, Darcy-Weisbach 관계식은 다공질 유동해석에 적용이 가능하도록 확장되었다. 또한, 이는 모세관 유동모델을 바탕으로 마찰등가투과도(FEP)로 다시 정의되었다. 이때, 도출된 관계식의 유효성은 Kozeny-Carman 방정식과의 비교를 통해 검증되었고, 제시된 FEP 관계식이 Kozeny-Carman 방정식의 일반화된 형태임도 확인하였다. 결론적으로, 본 연구에서는 Darcy-Weisbach 관계식을 다공질 유동해석에 적용할 수 있도록 적절히 확장하고, 새로운 투과도 산정을 위한 FEP 관계식을 제시하였다.

Use of rotating disk for Darcy-Forchheimer flow of nanofluid; Similarity transformation through porous media

  • Hussain, Muzamal;Sharif, Humaira;Khadimallah, Mohamed Amine;Ayed, Hamdi;Banoqitah, Essam Mohammed;Loukil, Hassen;Ali, Imam;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제30권1호
    • /
    • pp.1-8
    • /
    • 2022
  • The basic purpose of the current study is to compute the numerical analysis of heat source/sink for Darcy-Forchheimer three dimensional nanofluid flow with gyrotactic microorganism by rotatable disk via porous media under the slip conditions. Due to nanoparticles, random and thermophoretic motion phenomenon occurs. The governing mathematical model is handled numerically by shooting method. Additionally, the characteristics of velocities, mass, heat, motile microorganisms and associated parameters are thoroughly analyzed via plots and tables. Different physical parameters like Forchheimer number, slip parameters like velocity, porosity parameter, Prandtl number, Brownian number, thermophoresis parameter, heat sink/source parameter, bioconvected Rayleigh number, buoyancy parameteron dimensionless velocities, temperature. Approximate values of Sherwood microorganism are analyzed.

배기가스 세정장치내 유체 유동에 대한 다공성 매질 적용 기반의 전산해석적 연구 (Computational Study on the Application of Porous Media to Fluid Flow in Exhaust Gas Scrubbers)

  • 홍진표;윤상환;윤현규;김래성;안준태
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.1-10
    • /
    • 2022
  • Exhaust gases emitted from internal combustion engines contain nitrogen oxides (NOx) and sulfur oxides (SOx), which are major air pollutants causing acid rain, respiratory diseases, and photochemical smog. As a countermeasure, scrubber systems are being studied extensively. In this study, the pressure drop characteristics were analyzed by changing the exhaust gas inflow velocity using a scrubber for a 700 kW engine as a model. In addition, the fluid flow inside the scrubber and the behavioral characteristics of the droplets were studied using CFD, and the design compatibility of the cleaning device was verified. Flow analysis was performed using inertial and viscous resistances by applying porous media to the complex shape of the scrubber. The speed of the exhaust passing through the outlet nozzle from the inlet was determined through the droplet behavior analysis by spraying, and the flow characteristics for the pressure drop were studied. In addition, it was confirmed through computational analysis whether there was a stagnation section in the exhaust gas flow in the scrubber or the sprayed droplets were in good contact with the exhaust gas.

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.

좁은 다중 동축 석영관 내부에서의 예혼합 화염의 전파 특성에 대한 기초 실험 (Basic Experiment on the Propagation Characteristics of Premixed Flames in Narrow Annular Coaxial Quartz Tubes)

  • 조문수;백다빈;김남일
    • 한국연소학회지
    • /
    • 제18권2호
    • /
    • pp.1-7
    • /
    • 2013
  • Flame stabilization characteristics of premixed flames in narrow annular coaxial tubes (NACT) were investigated experimentally. The NACT burner was proposed as a model of a cylindrical refractory burner, and it was made of quartz tubes. Flame stabilization conditions affected by the characteristic length of the burner was investigated with the variation of the equivalence ratio and the flow rates. Flame behaviors in narrow spaces could be directly observed. Conclusively, more wide flame stabilization conditions could be obtained at the case of the decreased channel scale. A flame instability, such as combustion noise was detected concerned with the flame oscillation observed at the surface of multi channel stage. Some flame propagation characteristics had complicated tendencies that may exist in practical porous-media combustors. Therefore, this NACT burner can be a basic configuration for the development of flame stabilization model in porous media combustor, and it will enhance our understanding about the behavior of flames in meso-scale combustion spaces.

충돌 공기제트에서 국한 유로 내 발포 알루미늄 방열기의 열전달 수치해석 (A Numerical Study on Beat Transfer from an Aluminum Foam Heat Sink by Impinging Air Jet in a Confined Channel)

  • 이상태;김서영;이관수
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.883-892
    • /
    • 2002
  • A numerical study has been carried out to investigate the flow and heat transfer from an aluminum foam heat sink in a confined channel. A uniform heat flux is given at the bottom of the aluminum foam heat sink, which is horizontally placed on the heated surface. The channel walls are assumed to be adiabatic. Cold air is supplied from the top opening of the channel and exhausted to the channel outlet. Comprehensive numerical solutions are acquired to the governing Wavier-Stokes and energy equations, using the Brinkman-Forchheimer extended Darcy model and the local thermal non-equilibrium model f3r the region of porous media. Details of flow and thermal fields are examined over wide ranges of the principal parameters; i.e., the Reynolds number Re, the height of heat sink h/H, porosity $\varepsilon$and pore diameter ratio $R_{H}$.

Analytical model of transverse pressure loss in a rod array

  • Ricciardi, Guillaume;Peybernes, Jean;Faucher, Vincent
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2714-2719
    • /
    • 2022
  • The present paper proposes some new computational methods and results in the framework of flow computation through congested domains seen as porous media, as it can be found in the core of a Pressurized Water Reactor (PWR). The flow is thus mostly governed by the distribution of pressure losses, both through the porous structures, such as fuel assemblies, and in the thin fluid layers between them. The purpose of the present paper is to consider the question of the interaction of a flow and a rod bundle from an analytical point of view gathering all the contributions through a set of equations as simple and representative as possible. It aims at demonstrating a sound understanding of the relevant phenomena governing the flow establishment in the geometry of interest instead of relying mainly on a posteriori observations obtained both experimentally and numerically. Comparison with two set of experimental results showed good agreement. The model proposed being analytical it appears easily implementable for studies needing an expression of fluid forces in a rod array as for fuel assembly bowing issue. It would be interesting to test the reliability of the model on other geometry with different P/R ratios.

The Effect of Micro-Pore Configuration on the Flow and Thermal Fields of Supercritical CO2

  • Choi, Hang-Seok;Park, Hoon-Chae;Choi, Yeon-Seok
    • Environmental Engineering Research
    • /
    • 제17권2호
    • /
    • pp.83-88
    • /
    • 2012
  • Currently, the technology of $CO_2$ capture and storage (CCS) has become the main issue for climate change and global warming. Among CCS technologies, the prediction of $CO_2$ behavior underground is very critical for $CO_2$ storage design, especially for its safety. Hence, the purpose of this paper is to model and simulate $CO_2$ flow and its heat transfer characteristics in a storage site, for more accurate evaluation of the safety for $CO_2$ storage process. In the present study, as part of the storage design, a micro pore-scale model was developed to mimic real porous structure, and computational fluid dynamics was applied to calculate the $CO_2$ flow and thermal fields in the micro pore-scale porous structure. Three different configurations of 3-dimensional (3D) micro-pore structures were developed, and compared. In particular, the technique of assigning random pore size in 3D porous media was considered. For the computation, physical conditions such as temperature and pressure were set up, equivalent to the underground condition at which the $CO_2$ fluid was injected. From the results, the characteristics of the flow and thermal fields of $CO_2$ were scrutinized, and the influence of the configuration of the micro-pore structure on the flow and scalar transport was investigated.

전산유체역학을 이용한 자동차 엔진룸의 열 및 유동장 해석 (AUTOMOBILE UNDERHOOD THERMAL AND AIR FLOW SIMULATION USING CFD)

  • 오기탁;김진호;이상욱;김연수;하진욱;강원구
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.22-27
    • /
    • 2007
  • Automobile underhood thermal and airflow simulation h α s been performed by using a commercial CFD program, FLUENT. To implement the radiation heat transfer effect to the underhood thermal and flow field, Discrete Ordinates Method(DOM) was used. The cooling fan was modeled by using the Multiple Reference Frame(MRF) technique. For the implementation of the heat exchangers, such as radiator and condenser, which are located in the front side of vehicle, the effectiveness-NTU model was used. The pressure drop throughout the heat exchangers was modeled as Porous media. For the validation of the current computational method, the coolant temperature at the inlet port of the radiator was compared with experimental data, and less than 3% error was observed. Finally, the composed model was used for the cooling fan spec determination process in the development of a new vehicle, and the results showed that the current CFD method could be successfully applied to the vehicle development process.