• Title/Summary/Keyword: Porous lime filters

Search Result 2, Processing Time 0.016 seconds

Preparation of Porous Lime Filters and SOx Removal Characteristics (석회질 다공성 필터 제조 및 SOx 제거 특성)

  • Lee Kwanghee;Park Jaikoo;Kim Hyunjung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • This study was focused on evaluating physical properties and SO$_{x}$ removal capability of porous lime filters prepared by a foaming and a gelcasting method. Porosities of lime filters ranged from 55% to 85%, and their mean pore sizes were about 95 ${\mu}{\textrm}{m}$. It was observed that porous lime filters had the continuous pore structure that most pores were inter-connected by many windows. Before SO$_{x}$ removal reaction a surface of porous lime filters was made up of calcium oxide, but after reaction calcium sulfate became a main component. The SO$_{x}$ removal efficiency and the conversion ratio of calcium oxide to calcium sulfate increased according to reaction temperature and porosity. At 100$0^{\circ}C$, SO$_{x}$ removal efficiency of filters was always over 98% regardless of the porosity. In case of the filter with the porosity of 85%, the conversion ratios of calcium oxide increased according to the reaction temperature, and they were in the range 30% to 60%. to 60%.

Preparation and Characterization of Porous Filters from Ca(OH)2 and CaCO3 for SO2 Removal in Dry-FGD Process (건식 FGD 공정에서 SO2 제거를 위한 Ca(OH)2 및 CaCO3 원료의 다공성 필터 제조 및 특성)

  • Han, Yo-Seop;Kim, Hyun-Jung;Park, Young-Goo;Park, Jai-Koo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.772-777
    • /
    • 2005
  • Porous hydrated lime and limestone filters were prepared by foaming and gelcasting method, and their physical properties were evaluated. Through these analyses, it has been found that with the increased porosity and pore size of the filters, majority of pores in the filters were inter-connected by windows. Also, $SO_2$ removal efficiency for the filters was investigated. As the porosity and the reaction temperature increased, $SO_2$ removal efficiency also increased. Especially, unlike the variation of entrance concentration, the entrance flow rate had great influence on the removal efficiency. In case of the filters with an equal porosity, the hydrated lime filter had superior removal efficiency compared to the limestone filter. From these results, it was shown that the high conversion ratio to CaO from the hydrated lime filter was a result of facilitated formation of $CaSO_4$ by $SO_2$.