• Title/Summary/Keyword: Porous ceramic plate

Search Result 27, Processing Time 0.018 seconds

Microstructural Changes of $SiO_2-Si$ During Liquid-Phase Sintering (액상소결단계에서 $SiO_2-Si$의 미세조직 변화)

  • 강대갑;정충환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.443-447
    • /
    • 1994
  • Compacts of mixed SiO2-Si powder were liquid phase sintered at 145$0^{\circ}C$ for up to 60 min in a hydrogen atmosphere. In contrast to the conventional microstructures of liquid phase sintered materials, the specimens showed that the solid phase of SiO2 formed a matrix while the liquid phase of Si was the dispersed in the solid matrix. The dispersion of liquid Si pockets was attributed to the high wetting angle of liquid Si on solid SiO2. Because of relatively high solubility of SiO2 in liquid Si at 145$0^{\circ}C$, SiO2 particles accommodated their shape via a solution-reprecipitation process. The liquid Si pockets grew by coalescing with their neighbour pockets. In the latter stage of the sintering, plate-shape grains appeared in the liquid Si pockets. The grains were SiO2 phase precipitated from the liquid Si which was oversaturated with oxygen during cooling to room temperature. By the formation and subsequent removal of the gaseous SiO phase due to the reaction between SiO2 and Si, the specimens became porous.

  • PDF

Electricity Generation Coupled with Wastewater Treatment Using a Microbial Fuel Cell Composed of a Modified Cathode with a Ceramic Membrane and Cellulose Acetate Film

  • Seo, Ha-Na;Lee, Woo-Jin;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1019-1027
    • /
    • 2009
  • A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99% of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99% similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

Characteristics of Combustion and Thermal Efficiency for Premixed Flat Plate Burner Using a Porous Media (다공성 소재 종류에 따른 예혼합 평판버너의 연소 및 열효율 특성에 관한 연구)

  • Kum, Sungmin;Yu, Byeonghun;Lee, Chang-Eon;Lee, Seungro
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.385-392
    • /
    • 2012
  • The purpose of this study is investigated on the combustion and the thermal characteristics of porous media burners which are many using for a condensing boiler recently. In addition, results of this study will be used the fundamental information to decide the burner type which will be applied to the future development of EGR(Exhaust gas recirculation) condensing boiler. Two flat type of burners made of a the metal fiber(MF) and the ceramic(CM) were selected and examined, experimentally. As experimental results, the emitted CO concentration of CM was higher than that of MF. However, the NO concentration of MF was higher than that of CM. The efficiencies of both burners were increased as increasing the burner capacity. While the efficiency of MF was higher than that of CM, regardless of the burner capacity. In the experimental range, MF is appropriated for the burner material and 0.8 of equivalence ratio is an optimal operation condition, regarding of the proportional control, the thermal efficiency and emitted NO and CO concentration based on the regulations of KS B standard and EN 677 standard.

Preparation of Inorganic Ultrafiltration Membrane by Anodic Oxidation in Oxalic Acid (수산전해액하에서 양극산화에 의한 무기 UF막의 제조)

  • Lee, Chang-Woo;Hong, Young-Ho;Chang, Yoon-Ho;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-541
    • /
    • 1998
  • The porous size alumina membrane was prepared by anodic oxidation with current method in an aqueous solution of oxalic acid. The aluminum metal plate was pretreated with thermal oxidation, chemical polishing and electropolishing before anodic oxidation. Membrane thickness and pore size distribution were investigated with several anodizing conditions; reaction temperature, cumulative charge, electrolyte concentration and current density. The porous alumina membrane obtained was $55{\sim}75{\mu}m$ thick with straight micropore of 45~100nm. Also, the porous alumina membrane has an uniform pore diameter and pore distribution. It was inorganic ultrafiltration membrane as a kind of the ceramic membrane.

  • PDF

Electrochemical and Biochemical Analysis of Ethanol Fermentation of Zymomonas mobilis KCCM11336

  • Jeon, Bo-Young;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.666-674
    • /
    • 2009
  • An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.

Direct-Write Fabrication of Solid Oxide Fuel Cell by Robo-Dispensing (로보 디스펜싱을 이용하여 직접묘화방식으로 제조된 고출력 소형 고체산화물 연료전지)

  • Kim, Yong-Bum;Moon, Jooho;Kim, Joosun;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.425-431
    • /
    • 2005
  • Line Shaped Solid Oxide Fuel Cell (SOFC) with multilayered structure has been fabricated via direct-writing process. The cell is electrolyte of Ni-YSZ cermet anode, YSZ electrolyte and LSM cathode. They were processed into pastes for the direct writing process. Syringe filled with each electrode and electrolyte paste was loaded into the computer-controlled robe-dispensing machine and the paste was dispensed through cylindrical nozzle of 0.21 mm in diameter under the air pressure of 0.1 tow onto a moving plate with 1.22 mm/s. First of all, the anode paste was dispensed on the PSZ porous substrate, and then the electrolyte paste was dispensed. The anode/electrolyte and the PSZ substrate were co-fired at $1350^{\circ}C$ in air atmosphere for 3 h. The cathode layer was similarly dispensed and sintered at $1200^{\circ}C$ for 1 h. All the electrode/electrolyte lines were visually aligned during the direct writing process. The effective reaction area of fabricated SOFC was $0.03 cm^2$, and the thickness of anode, electrolyte and cathode was 20 $\mu$m, 15 $\mu$m, and 10 $\mu$m, respectively. The single line-shaped SOFC fabricated by direct-writing process exhibited OCV of 0.95 V and maximum power density of $0.35W/cm^2$ at $810^{\circ}C$.

Studies on Improved Carbon Cathode Performance in High Rate $Li/SOCl_2$ Cell (고율 방전용 $Li/SOCl_2$ 전지의 카본 양극 개선에 관한 연구)

  • 최정자;조성백;박희숙
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.225-232
    • /
    • 1997
  • The performance characteristics of high rate discharge LiSOCl2 cells are highly affected by carbon cathode. During the cell discharge, SOCl2 reduction takes place at the porous carbon cathode, resulting in the precipitation of reaction products, mainly LiCl, within the pores of the substrate. This leads to eventual passivation of the cathode surface and resulting cell failure. To improve the cathode performance, we ex-amined discharge reactions of cathodes (half-cell, 50 mA/$\textrm{cm}^2$ constant current) with various surface density and thickness. The carbon cathode with the optimum capacity for our application is surface density 0.04 g/$\textrm{cm}^2$ and thickness 1.4mm carbon. The carbon cathode with surface density 0.04g/$\textrm{cm}^2$ and thickness 1.4 mm exhibits decreased polarization, increased discharge duration time and capacity (Ah/$\textrm{cm}^2$) as compared with that with surface density 0.04g/$\textrm{cm}^2$ and thickness 0.8mm. The porosities analyses on the two carbon cathodes show that total pore volume of the carbon cathode with thickness 1.4 mm is larger than that with thickness 0.8mm. The increased volume of mesopores (0.05$\mu$m~0.5$\mu$m) and macropores(>0.5$\mu$m) is ob-served with the carbon cathode with thickness 1.4mm as compared with that with thickness 0.8mm, which can be related with the observed capacity increase. We observed LiCl crystals, cubic crystallites and fused, plate-like aggregates, and some elemental S as discharge products by EDS and XRD.

  • PDF