• Title/Summary/Keyword: Porous body

Search Result 207, Processing Time 0.025 seconds

Load Sharing Ratios Between the Cortex and Centrum in a Lumbar Vertebral Body with aging using Finite Element Method (유한 요소 법을 이용한 노화에 따른 요추의 피질 골과 해면 골 간의 하중 분담 비율)

  • Lim, JongWan
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.90-103
    • /
    • 2016
  • This research was aimed to analyze load sharing ratios between cortical shell and trabecular bone of a degraded lumbar vertebra with aging, and also evaluate elastic moduli assigned into an FE model, using finite element method. For the better analysis of trabecular bone, effective elastic moduli, that is, nominal elastic moduli divided by the volumetric porosities was used. The elastic moduli of the cortical shell suitable for the trabecular bone were obtained from the equations on the basis of idealized stress-strain relations, including areal porosities. To minimize numerical errors, p-element was used. Using eight parameters that refer to some published papers, the geometry of L3 with a removed posterior part. After the constant compressive displacement was applied, the load sharing ratios were obtained by using both every elastic strain energy and every vertical force between two bones in each 8-volume. As results, 1) according to an increase in age from 20-year to 80-year, load sharing ratios of trabecular bone decreased from 55% to 49%; 2) the maximal ratios of each bone were occurred in the mid-plane of centrums and the endplate of cortical shells, respectively; 3) effective elastic moduli assigned into a porous centrum/cortex were found to be adequate; 4) for load sharing ratios, the difference of two methods showed that the total ratios were almost same within less than 1% but the partial ratios at every depth were more or less different each other.

Hydrolysis of Urea by Immobilized Urease Membrane (우레아제(Urease) 고정막에 의한 요소(Urea)의 가수분해)

  • Kim, Byoung-Sik;Kim, Min;Heo, Kwang-Beom;Hong, Joo-Hee;Na, Won-Jae;Kim, Jae-Hun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • In this study, we examined the preparation and hydrolysis property of immobilized urease membrane to decompose harmful urea in the body and remove ammonia which was produced by its decomposition. Urease immobilized membrane was prepared by introducing anion-exchange group DEA into porous hollow-fiber membrane by radiation graft polymerization method, and immobilization of urease. When urease was immobilized at membrane introduced with anion-exchange group, the more increasing grafting rate, the more increasing immobilization amount. The result originates from the fact that a greater amount of protein was immobilized by forming a multilayer on the longer grafted chain. Meanwhile, the addition of the cross-linker was possible not only to suppress separation phenomenon produced during a washing process of immobilized urease membrane but also to enable the recycling of membrane. Urease Immobilized membrane with no separation phenomenon was prepared by cross-linking reaction for 5 h, and the hydrolysis rate of prepared urease immobilized membrane was over 98% and 50%, respectively, in 1 mol and 4 mol urea solutions.

Cell Properties for SOFC Using Synthesized Powder of Electrolyte LSGM System and Cathode LSM System (LSGM 전해질과 LSM 양극의 합성분말을 이용한 SOFC 단위전지의 특성)

  • Lee, Mi-Jai;Nam, Jeong-Hee;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.359-366
    • /
    • 2002
  • The purpose of this study is to investigate the properties of LSGM electrolyte and LSM cathode. The unit cell based on the optimum conditions and processing for high performance was fabricated and measured. The single phase of $LaGaO_3$ was obtained on sintering at $1500^{\circ}$ for 6h with composition of $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}와 (La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ and $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$. The grain size of the sintered body was about $10∼30{\mu}m$ and electrical conductivity was 0.13 S/cm measured at $800^{\circ}$. The single phase of $LaMnO_3$ structure in $(La1-xSrx)MnO_3$ system was obtained at x=0∼0.2 and the particle size of the synthesized powder was about 40 nm. The unit cell was prepared by firing at $1200^{\circ}$ for 1h with $(La_{0.9}Sr_{0.1})MnO_3$ cathode and 0.9NiO-0.1YSZ anode screen-printed on surfaces of $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ electrolyte. The grain size of the electrode was close to $1{\mu}m$ and the electrode had porous structure. The maximum power density of unit cell showed $0.3W/cm^2$ at $800^{\circ}$.

Analysis of a Gas Mask Using CFD Simulation (CFD모사기법을 이용한 가스 여과기 성능 해석)

  • Jeon, Rakyoung;Kwon, Kihyun;Yoon, Soonmin;Park, Myungkyu;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.

Evaluation of NOx Reduction Performance by Photocatalytic (TiO2) Coating of Cement Mortar Mixed with Zeolite and Activate Hwangtoh (제올라이트와 활성 황토를 혼입한 시멘트 모르타르의 광촉매(TiO2) 코팅에 따른 NOx 저감성능평가)

  • Park, Jang-Hyun;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.483-489
    • /
    • 2020
  • Particulate matter is divided into PM10 (particle diameter of 10 ㎛ or less) and PM2.5 (particle diameter of 2.5 ㎛ or less), which are approximately 1/5 of the thickness of the hair. Due to its effect on the human body, lung disease, arteriosclerosis and heart It is known as a carcinogen that causes various diseases such as diseases. It is known that the main cause of such fine dust is nitrogen dioxide (NOx), which is emitted from automobiles in about 57.3% of urban roadsides. Therefore, in this study, as part of the development of functional construction materials to reduce NOx generated from road transport pollutants, comparative evaluation of NOx reduction performance was conducted according to the replacement rate of cement mortar in which cement was replaced with a porous material. In addition, the NOx reduction performance of cement mortar according to the photocatalyst application method and the number of applications was compared an d evaluated. As a result of the experiment, when activated ocher was substituted by 30%, it showed a reduction effect of about 32.7%, showing the best reduction performance.

Anatomical Characteristics of Major Plantation Species Growing in Indonesia II (인도네시아산 주요 조림수종의 해부학적 특성 II)

  • Jang, Sa-Ra;Jang, Jae-Hyuk;Kim, Jong-Ho;Febrianto, Fauzi;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.635-645
    • /
    • 2014
  • The anatomical characteristics of eight major wood species planted in Indonesia were investigated to provide valuable information for their effective utilization. The growth-ring boundaries of Damar and Sumatran pine were indistinct. Resin canal was found in Sumatran pine but it was not observed in Damar. Cupressoid pit and taxodioid pit were found in Damar and window-like pit and pinoid pit were observed in Sumatran pine. Tracheid length of Damar and Sumatran pine was shorter than $3,000{\mu}m$. There were uniseriate rays in Damar and Sumatran pine and fusiform ray in Sumatran pine. All the hardwood species observed in this study were diffuse-porous. They had different vessel groups, i.e., solitary pore in Afrika and Simpur Batu, pore cluster in Angsana and mostly 2-4 rows of radial pore multiple in Mahoni. Mindi and Trembesi had mostly 2-3 rows of radial pore multiple with paratracheal parenchyma as aliform and confluent types. Afrika, Mahoni and Simpur Batu showed heterocellular rays which composed of procumbent cells in the body and mostly 1-2 rows of upright and/or square cells in the margin. All ray cells procumbent was observed in Angsana, Mindi and Trembesi. The large rays commonly exceeding 1 mm in height and ray width of 3~6 cells were observed in Simpur Batu. The other five hardwood species showed ray width of 1~3 cells. Vessel number per $mm^2$ of Angsana and Simpur Batu was higher than those of the other hardwood species. The length of wood fiber and tracheid showed a tendency to increase from pith to bark. By IAWA list, fiber length of hardwoods was classified into long in Simpur Batu and short in Angsana and Trembesi.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF