• 제목/요약/키워드: Porous bearing

검색결과 58건 처리시간 0.026초

Total Hip Arthroplasty with Cemented Dual Mobility Cup into a Fully Porous Multihole Cup with Variable Angle Locking Screws for Acetabular Fractures in the Frail Elderly

  • Mathias van den Broek;Kris Govaers
    • Hip & pelvis
    • /
    • 제35권1호
    • /
    • pp.54-61
    • /
    • 2023
  • Purpose: The purpose was to examine the clinical and radiological outcomes after surgical treatment of acetabular fractures with total hip arthroplasty with a dual mobility cup cemented into a porous multihole cup in the population of frail elderly patients. Materials and Methods: A retrospective review of 16 patients who underwent surgery (mean age, 76.7 years) with a mean follow-up period of 36.9 months was conducted. Following surgery, patients underwent postoperative follow-up at six weeks, three, six, and 12 months and clinical and radiological examinations were performed. Results: Classification of fractures was based on the Letournel classification. Following surgery, all patients were allowed weight-bearing as tolerated immediately postoperative. Fourteen patients showed maintenance of preoperative mobility status at one year. The mean Harris hip score was 64.8 (range, 34.7-82.8) and 80.0 (range, 60.8-93.8) at three months and one year, respectively. The mortality rate was 12.5% at one year (2/16). Complications included heterotopic ossification (2/16), deep venous thrombosis (1/16), heamatoma (1/16), and femoral revision due to a Vancouver B2 fracture (1/16). No case of deep infection, dislocation, or implant loosening was reported. Conclusion: Total hip arthroplasty using a dual mobility cup cemented into a porous multihole cup with locking screws resulted in a stable construct with a capacity for immediate weight-bearing as tolerated with rapid relief of pain. The findings of this study suggest that this procedure can be regarded as a safe method that has shown promising clinical and radiological outcomes for treatment of patients with medical frailty.

Influences of heating processes on properties and microstructure of porous CeO2 beads as a surrogate for nuclear fuels fabricated by a microfluidic sol-gel process

  • Song, Tong;Guo, Lin;Chen, Ming;Chang, Zhen-Qi
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.257-262
    • /
    • 2019
  • The control of microstructure is critical for the porous fuel particles used for infiltrating actinide nuclides. This study concerns the effect of heating processes on properties and microstructure of the fuel particles. The uniform gel precursor beads were synthesized by a microfluidic sol-gel process and then the porous $CeO_2$ microspheres, as a surrogate for the ceramic nuclear fuel particles, were obtained by heating treatment of the gel precursors. The fabricated $CeO_2$ microspheres have a narrow size distribution and good sphericity due to the feature of microfluidics. The effects of heating processes parameters, such as heating mode and peak temperatures on the properties of microspheres were studied in detail. An optimized heating mode and the peak temperature of $650^{\circ}C$ were selected to produce porous $CeO_2$ microspheres. The optimized heating mode can avoid the appearance of broken or crack microspheres in the heating process, and as-prepared porous microspheres were of suitable pore size distribution and pore volume for loading minor actinide (MA) solution by an infiltration method that is used for fabrication of MA-bearing nuclear fuel beads. After the infiltration process, $1000^{\circ}C$ was selected as the final temperature to improve the compressive strength of microspheres.

Experimental Investigation of Porous Bearings Under Different Lubricant and Lubricating Conditions

  • Durak, Ertugrul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1276-1286
    • /
    • 2003
  • The performance of porous bearing under different lubricants and lubricating conditions was experimentally investigated in this study. In order to carry out the experiments, a new test rig was designed to determine the tribological properties of based sintered bronze journal bearings that were manufactured by powder metallurgy (P/M) techniques. To determine the effects of lubricating conditions with and without oil supplement (OS) on the tribological characteristics of these bearings under static loading and periodic loadings, some experiments were carried out using different lubricants. In the tests, pure base oil (SAE 20W50), two fully formulated commercial engine oils (SAE20W50) and lubricating oils with commercial additive concentration ratio of 3% were used. The worn surfaces of test bearings were examined using optical microscopy. Experimental results showed that the change in friction coefficient was more stable and in smaller magnitude under static loading than that of periodic loading. In addition, the friction coefficient and the wear rate conducted with base oil resulted in higher values than those of fully formulated oils with and without OS lubricating conditions. The experimental results obtained in this study indicated that the correct selection of lubricant and suitable running conditions were very important on the tribological characteristics of porous bearings.

Friction and Wear Properties of Cu and Fe-based P/M Bearing Materials

  • Tufekci Kenan;Kurbanoglu Cahit;Durak Ertugrul;Tunay R. Fatih
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.513-521
    • /
    • 2006
  • The performances of porous bearings under different operating conditions were experimentally investigated in this study. Material groups studied are 90%Cu + 10%Sn bronze and 1%C + % balance Fe iron-based self-lubricating P/M bearings at constant (85%) density. In the experiments, the variation of the coefficient of friction and wear ratio of those two different group materials for different sliding speeds, loads, and temperatures were investigated. As a result, the variation of the friction coefficient-temperature for both constant load, and constant sliding speed, friction coefficient-average bearing pressure, PV-wear loss and temperature-wear loss curves were plotted and compared with each other for two materials, separately. The test results showed that Cu-based bearings have better friction and wear properties than Fe-based bearings.

Electro-osmosis에 의한 Dehydration (Dehydration by Electro-osmosis on Ceramic Body)

  • 한상목
    • 산업기술연구
    • /
    • 제4권
    • /
    • pp.43-46
    • /
    • 1984
  • In process of water removing safely from plastic clay, an electric field applied to a wet, porous solid such as day usually causes the rapid dehydration. The water-bearing positive ions move to negative electrode under the d. c. electrical stress or field. Therefore application of electro-osmosis to wet clay could include drying thick and large-scale ceramic body quickly and evenly. The d. c. power supply unit to 60 volts is necessary for safe practice. Also wider contact area and shorter distance between electrodes accelerate effectively the removal of water.

  • PDF

지오셀 특성 변화에 따른 하중지지력 연구 (Experimental Study of the Changing Characteristics of Geocell with Load Carrying capacity)

  • 홍승록;최진욱;유충식;이대영;이수형;유인균
    • 한국지반신소재학회논문집
    • /
    • 제12권3호
    • /
    • pp.1-13
    • /
    • 2013
  • 본 논문에서는 투수성 포장 하부구조의 지반에 지오셀 보강에 따른 거동특성을 다루었다. 지오셀을 이용한 포장구조체의 하중지지력 증가효과를 고찰하기 위하여 지오셀 결합부의 유형, 벽 두께, 직경을 변화시켜가며 총 9가지의 실험 케이스의 실내 축소모형실험을 진행하여 무보강 투수성 포장에 비해 지오셀로 보강된 포장 하부구조에서 더 큰 지지력이 발현 되는 것으로 나타났고 지오셀의 단면 형태의 관계 없이 거의 일정한 하중 지지력을 보이는 것으로 나타났다. 또한 지오셀 속채움 시 지오셀의 형상은 직경 30cm, 두께 1.8mm에서 가장 지지 효과가 크게 나타나는 것을 알 수 있었다.

Nondestructive Evaluation of the Defects in Composite-sintered Bushes Using Ultrasonics

  • Im, Kwang-Hee;Kim, Ki-Youl;Shin, Ki-Taek;Lee, Han-Hee;Jung, Il-Woong;Kang, To;Cho, Hyun-Joon
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.1013-1017
    • /
    • 2012
  • Advanced composite-sintered bushings are widely utilized in the areas of excavators and injection molding machines as a journal bearing. Since the bearings are mainly used under high loads, service life should be long and the stored oil of inner bushings has to be continually fed into the bearing. The composite-sintered bushings are consisted of the two different materials; outer steel materials and inner porous sintered materials respectively. High temperature diffusion bonding has been applied for holding the both materials of the bushing together. Therefore, it is very important that the bonding reliability has to be assured and evaluated in manufacturing process. Finite element method (FEM) is performed in order to evaluate the minimum allowable flaw sizes that are possibly generated in the composite-sintered bushings. Additionally, the composite-sintered bushings were undergone ultrasonic C-scan tests to find out the size of inherent flaws through artificially simulated UT signal analysis.

메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발 (Development of a Numerical Simulator for Methane-hydrate Production)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제30권9호
    • /
    • pp.67-75
    • /
    • 2014
  • 방대한 저장량으로 차세대 에너지원으로 평가받는 메탄가스 하이드레이트는 생산과정에서 유발될 수 있는 문제를 최소화하고 최적의 생산조건을 선정하기 위한 하이드레이트 포함한 다공질 재료의 THM 현상에 대한 프로그램의 개발이 절실하다. 기존의 해석 프로그램들은 국제공동연구를 통하여 프로그램들간의 상호 비교검증을 진행하고 있으나, 예측값의 불일치와 수렴성에 문제가 있는 것으로 나타났다. 본 논문에서는 다공질 재료내 메탄 하이드레이트의 해리 현상을 해석할 수 있는 fully coupled THM 유한요소 프로그램을 개발하였다. Methane hydrate, soil, water, 및 methane gas의 질량보존의 법칙, 에너지 보존의 법칙, 그리고 힘평형 방정식으로부터 지배방정식을 유도하였다. 다양한 주변수들의 조합을 통하여 주변수를 변위, 가스 포화도, 유체압, 온도, 하이드레이트 포화도로 선택하였으며, 상변화 전영역에서 해석이 가능하도록 하였다. 하이드레이트의 해리를 예측하는 모델은 kinetic model을 이용하였다. 개발된 THM 유한요소 프로그램을 이용하여 메탄가스 생산에 관한 Masuda의 실내 모형실험 결과와 비교적 분석을 수행하였으며, 해의 수렴성과 안정성을 확인할 수 있었다.

토목섬유 보강재로 보강된 철도 노반의 반복하중 하중지지력 연구 (Load Carrying Capacity of Geosynthetic Reinforced Railway Subgrade Under Cyclic Load)

  • 홍승록;조윤규;최정혁;정용준;유충식
    • 한국지반신소재학회논문집
    • /
    • 제12권4호
    • /
    • pp.109-121
    • /
    • 2013
  • 본 논문에서는 고속철도의 반복하중에 의한 토목섬유로 보강된 철도노반의 지지력 특성을 다루었다. 토목섬유로 보강된 철도노반은 투수성 포장 하부구조의 지반에 지오셀 및 지오그리드 보강을 하여 모사하였다. 포장구조체의 하중지지력 증가효과를 고찰하기 위하여 무보강상태의 지반과 지오셀 보강의 경우, 3층 지오그리드 보강인 경우에 대하여 총 3가지 실험 케이스의 실내 축소모형실험을 진행하였으며 잔류변형량은 초기 동적하중이 작용하는 경우가 2차 동적하중 작용시 보다 크게 나타났다. 지오셀 보강보다 3층 지오그리드 보강된 포장 하부구조에서 더 큰 지지력이 발현 되는 것으로 나타났다.

터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅 (HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower)

  • 주윤곤;윤재홍;조동율;천희곤
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.