• Title/Summary/Keyword: Porous alumina film

Search Result 47, Processing Time 0.025 seconds

Structure and Properties of Polymer Infiltrated Alumina Thick Film via Inkjet Printing Process

  • Jang, Hun-Woo;Koo, Eun-Hae;Hwang, Hae-Jin;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.207-207
    • /
    • 2008
  • Modern industry has focused on processing that produce low- loss dielectric substrates used complex micron-sized devices using tick film technologies such as tape casting and slip casting. However, these processes have inherent disadvantages fabricating high density interconnect with embedded passives for high speed communication electronic devices. Here, we have successfully fabricated porous alumina dielectric layer infiltrated with polymer solution by using inkjet printing process. Alumina suspensions were formulated as dielectric ink that were optimized to use in inkjet process. The layer was confirmed by field emission scanning electron microscope (FE-SEM) for measuring microstructure and volume fraction. In addition, the reaction kinetics and electrical properties were characterized by FT-IR and the impedance analyzer. The volume fraction of alumina in porous dielectric alumina layer is around 70% much higher than that in the conventional process. Furthermore, after infiltration on the dielectric layer using polymer resins such as cyanate ester. Excellent Q factors of the dielectric is about 200 when confirmed by impedance analyzer without any high temperature process.

  • PDF

Light emitting thin film structures based on organic luminophors embedded in porous alumina matrixes

  • Gorokh, G.G.;Labunov, V.A.;Smirnov, A.G.;Kukhta, A.V.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.315-318
    • /
    • 2002
  • Light emitting thin film structures based on organic luminophors embedded in porous alumina matrixes are discussing. The optical properties of the luminophors in a matrix differ greatly from their properties in usual crystalline state or in a solution and they depend on the concentration of luminophors molecules of up to 10-2 mol/l. Successful experiments on filling of pores with organic luminophors and the investigation of their luminescent and optical properties were carried out.

  • PDF

Preparation of Nano Wire by Anodic Oxidation I. Characteristics of Alumina Nano-Template by Anodic Oxidation (양극산화법에 의한 나노와이어 제조I. 알루미나 나노 템플레이트의 특성)

  • Jo, Su-Haeng;O, Han-Jun;Park, Chi-Seon;Jang, Jae-Myeong;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2002
  • Anodic alumina layer can be used as templates for preparation of nano-structured materials, because porous oxide layer on aluminum shows a uniform pore size and a high pore density. In order to find out possibility for template material to prepare nano wire, the effects of the anodic applied potential, anodic time and the temperature of electrolyte on pore diameter of anodic alumina layer were studied using SEM and AFM. The pore diameter of anodic alumina layer increased with applied anodic potential and electrolytic temperature. Especially, the pore diameter of anodic oxide layers formed in chromic acid can be well replicated by widening process in $H_3$$PO_4$solution.

Growth of High Uniform Polycrystalline Grain on the Highly Ordered Porous Anodic Alumina (다공질 양극산화 피막을 이용한 고균일 다결정 살리콘의 성장)

  • Kim, Jong-Yeon;Han, Jin-Woo;Kim, Young-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.375-375
    • /
    • 2007
  • In the conventional crystallization method, thepoly-Si TFTs show poor device-to-device uniformity because of the random location of the grain boundaries. However, our new crystallization method introduced in this paper employed substrate-embedded seeds on the highly ordered anodic alumina template to control both the location of seeds and the number of grain boundaries intentionally. In the process of excimer laser crystallization (ELC), a-Si film deposited on the anodic alumina by low pressure chemical vapor deposition (LPCVD) is transformed into fine poly-Si grains by explosive crystallization (XC) prior to primary melting. At the higher energy density, the film is nearly completely melted and laterally grown by super lateral growth (SLG) from remained small part of the fine poly-Si grains as seeds at the Si/anodic alumina interface. Resultant grain boundaries have almost linear functions of the number of seeds in concavities of anodic alumina which have a constant spacing. It reveals the uniformity of. device can be enhanced prominently by controlling location and size of pores which contains fine poly~Si seeds under artificial anodizing condition.

  • PDF

Applications and Preparation of Nanostructured Polymer Films by Using a Porous Alumina Template (다공성 알루미나 템플레이트를 이용한 고분자 나노 구조 필름의 제조 및 응용)

  • Lee, Joon Ho;Choi, Jin Kyu;Ahn, Myung-Su;Park, Eun Joo;Sung, Sang Do;Lee, Han-sub;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.586-592
    • /
    • 2009
  • The preparation of structures with nanosized arrays allows mimicking many different morphologies that exist in nature. In addition, polymer is considered as a material that can be easily applicable to the fabrication of nanostructures and can effectively exhibit nanosize effects since material, synthesis and processing cost is low, and many of polymer structures are well studied. Porous alumina template prepared by anodization of aluminum among nanofabrication methods is the one of promising routes that cost-effectively provides very regularly arrayed nanostructures. In this review, we describe the fabrication of the nanotemplate and template-based polymer nanostructures and their applications.

ALLOY STRUCTURE AND ANODIC FILM GROWTH ON RAPIDLY SOLIDIFIED AL-SI-BASED ALLOYS

  • Kim, H.S.;Thompson, G.E.;Wood, G.C.;Wright, I.G.;Maringer, R.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.2
    • /
    • pp.29-40
    • /
    • 1984
  • The structure of rapidly solidified Al-Si-based alloys and its relationship to subsequent anodic film growth in near neutral and acid solutions have been investigated. Solidification of the alloys proceeds via pre-dendritic nuclei, associated with rugosity of the casting surface, from which cellular-type growth, comprised of aluminium-rich material surrounded by silicon-containing material, emanates. Observation of ultramicrotomed sections of the alloys and their anodic films reveals the local oxidation of the silicon-rich phase and its incorporation into the anodic alumina film, formed in near neutral solutions. Such incorporation occurs but resultant isolation of the silicon-rich phase is not possible for anodizing in phosphoric acid, and a three-dimensional network of the oxidized silicon-containing phase, with continuing development of porous anodic alumina, is observed.

  • PDF

Nano-porous $Al_2O_3$ used as a protecting layer of AC Plasma Display Panel

  • Park, Sung-Yun;Hong, Sang-Min;Shin, Bhum-Jae;Cho, Jin-Hoon;Kim, Seong-Su;Park, Sung-Jin;Lee, Kyu-Wang;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.359-361
    • /
    • 2003
  • Nano-porous alumina was investigated as a protecting layer in an AC Plasma Display Panel. A 2 ${\mu}m$ thick nano-porous $Al_2O_3$ layer inserted with MgO was formed on the dielectric layer instead of the conventional 500 nm-thick MgO thin film. Both nano-porous $Al_2O_3$layer and inserted MgO were prepared by wet process. The luminance and luminous efficiency of 3-inch test panel adopting nano-porous $Al_2O_3$ was higher than that of the conventional PDP.

  • PDF

Synthesis of zeolite MFI films on alumina and silicon supports using seed crystals (알루미나와 실리콘 지지체에 종자결정에 의한 제올라이트 MFI 필름의 합성)

  • Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • Contiuous c-oriented zeolite MFI films $(<35{\mu}m)$ were prepared by hydrothermal secondary growth of silicalite-1 seed crystal in the surface of alumina porous substrate and silicon substrate. The supported films were characterized with scanning electron microscopy and X-ray diffraction. Effect of substrate surface roughness were investigated and a mechanism for c-oriented film formation and characteristic dom-like defects formation which is observed after seeding growth was discussed. The roughness of substrate plays an important role.

A Study for the fabrication of Au dot-arrays using porous alumina film (다공성 알루미나 박막을 이용한 Au dot-arrays의 제작에 관한 연구)

  • Jung, Kyung-Han;Park, Sang-Hyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.922-925
    • /
    • 2003
  • The interest of self-organization materials that have uniform and regular structure in nano scale has been grown due to their utilization in various fields of nanotechnology. An attractive candidate among these materials is anodic aluminum oxide film, which are formed by anodization of aluminum in an appropriate acid solution. The anodic aluminum oxide film has a highly ordered porous structure with very uniform and nearly parallel pores that can be organized in an almost precise close-packed hexagonal structure. In this study, we attempt to make Au dot arrays, which were fabricated using anodic aluminum oxide film as an evaporation mask. The Au dot arrays have a uniform sized dots and spacing to its neighbors and the average diameter of Au dots is about 60 nm corresponding to them of the mask.

  • PDF

Pore Structure Modification and Characterization of Porous Alumina Filter with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 알루미나 필터의 기공구조 개질 및 특성 평가)

  • 박원순;최두진;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.518-527
    • /
    • 2004
  • In this study, SiC whiskers were grown in porous alumina substrate in order to enhance the filtering efficiency, performance, and durability by controlling pore morphology. This experiment was performed by Chemical Vapor Infiltration (CVI) in order to obtain the whiskers on the inside of pores as well as on the surface of porous the A1$_2$O$_3$ substrate. The deposition behavior was changed remarkably with the deposition position, temperature, and input gas ratio. First, the mean diameter of whisker was decreased as the position of observation moved into the inside of substrate due to the reactant gas depletion effect'. Second, the deposition temperature caused the changes of the deposition type such as debris, whiskers and films and the change in morphology affect the various properties. When SiC films were deposited. the gas permeability and the specific surface area decreased. However, the whisker showed the opposite result. The whiskers increase not only the specific surface area and minimizing pressure drop but also mechanical strength. Therefore it is expected that the porous alumina body which deposited the SiC whisker is the promising material for the filter trapping the particles.