• Title/Summary/Keyword: Porous Turbulent Modeling

Search Result 9, Processing Time 0.024 seconds

A Modified Turbulent Porous Modeling for Numerical Analysis (수치해석을 위한 변형된 난류 다공성 모델링)

  • Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.875-882
    • /
    • 2002
  • The modeling for turbulent flow through a porous media has not been confirmed because of a undetermined constant which appears in the governing equations. In present study, the turbulent porous modeling based on the local thermal equilibrium has been extended to the turbulent clear flow. A undetermined constant is also suggested by microscopic analysis. The microscopic analysis is performed in the flat tube with micro-channels, and it confirms that the undetermined constant is 0.99. It is shown that the results of the macroscopic analysis using confirmed constant agree well with those of the microscopic analysis with a maximum error of 3.5%.

Heat and Flow Analysis of a Parallel Flow Heat Exchanger Using Porous Modeling (다공성 모델링을 이용한 평행류 열교환기의 열.유동 해석)

  • Jeong, Gil-Wan;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1784-1792
    • /
    • 2001
  • Numerical analysis on a parallel flow heat exchanger(PFHE) is performed using 2 dimensional turbulent porous modeling. This modeling can consider three-dimensional configuration of passage (flat tube with micro-channels), and the stability and accuracy of numerical results are improved. The geometrical parameters(e.g., the position of separators, inlet/outlet, and porosity of passages of a PFHE) are varied in order to examine the flow and thermal characteristics and flow distribution of the single phase multiple passages system. The flow non-uniformities along the paths of the PFHE are observed to evaluate the thermal performance of the heat exchanger. The location of inlet affects the heat transfer, and the location of outlet affects the pressure drop. The porosity with the optimum thermal performance is around 0.53.

Numerical Study on Flow Characteristics of Hollow Fiber Membrane Module for Water Recovery Cooling Tower (수분회수 냉각탑에 적용되는 중공사막 모듈의 유동특성에 관한 수치해석적 연구)

  • Park, Sang Cheol;Park, Hyun Seol;Lee, Hyung Keun;Shin, Weon Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.537-544
    • /
    • 2017
  • The purpose of this study is to analyze the flow characteristics when a staggered hollow fiber membrane module is modeled as a porous medium. The pressure-velocity equation was used for modeling the porous medium, using pressure drop data. In terms of flow characteristics, we compared the case of the "porous medium" when the membrane module was modeled as a porous medium with the case of the "membrane module" when considering the original shape of the membrane module. The difference in pressure drop between the "porous medium" and "membrane module" was less than 0.6%. However, the maximum flow velocity and mean turbulent kinetic energy of the "porous medium" were 2.5 and 95 times larger than those of the "membrane module," respectively. Our results indicate that modeling the hollow fiber module as a porous medium is useful for predicting pressure drop, but not sufficient for predicting the maximum flow velocity and mean turbulent kinetic energy.

A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration (4각 안내덕트 루프형상에 의한 난류특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim;Shin, Byeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.541-551
    • /
    • 2009
  • Configuration of the inlet transition square duct (hereinafter referred to as "transition duct") for heat recovery steam generator (hereinafter referred to as "HRSG") in combined cycle power plant is limited by the construction type of HRSG and plant site condition. The main purpose of the present study is to analyze the effect of a variation in turbulent flow pattern by roof slop angle change of transition duct for horizontal HRSG, which is influencing heat flux in heat transfer structure to the finned tube bank. In this study, a computational fluid dynamics(CFD) is applied to predict turbulent flow pattern and comparisons are made to 1/12th scale cold model test data for verification. Re-normalization group theory (RNG) based k-$\epsilon$ turbulent model, which improves the accuracy for rapidly strained flow and swirling flow in comparison with standard k-$\epsilon$ model, is used for the results cited in this study. To reduce the amount of computer resources required for modeling the finned tube bank, a porous media model is used.

Numerical Study on Heat Transfer Characteristics of Turbulent Flow in Transition Duct (안내덕트 내부 난류유동구조에 따른 열전달 특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.923-932
    • /
    • 2011
  • Because of the instability of a flow pattern in the inlet transition square duct (hereinafter referred to as "transition duct") of a heat recovery steam generator (hereinafter referred to as "HRSG") in a combined cycle power plant, the Reynolds number in the first row of a tube bank is differs sharply from that in the sectional area of the transition duct. This causes differences in the heat flux in each tube in the tube bank. The computational fluid dynamics (CFD) predictions provide three-dimensional results for velocity, temperature, and other flow parameters over the entire domain of the duct and HRSG. A renormalization group theory (RNG) based k-${\epsilon}$�� turbulent model is used for obtaining the results cited in this study. A porous media option is used for modeling the tube banks and the number of transfer units method is used for determining the heat transfer characteristics. This study describes a comparison between the numerical simulation results and actual design output.

NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF MANIFOLD FEED-STREAM IN POLYMER ELECTROLYTE FUEL CELL (고분자 전해질 연료전지의 매니폴드 설계 및 해석)

  • JUNG Hye-Mi;UM Sukkee;PARK Jungsun;LEE Won-Yong;KIM Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.260-263
    • /
    • 2005
  • The effects of internal manifold designs the reactant feed-stream in Polymer Electrolyte Fuel Cells (PEFCs) is studied to figure out mass flow-distribution patterns over an entire fuel cell stack domain. Reactants flows are modeled either laminar or turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-determined for computational analysis. In this work, numerical models for reactant feed-stream in the PEFC manifolds are classified into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain information on the optimal design and operation of a PEMC system.

  • PDF

Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구)

  • Jung Hye-Mi;Um Sukkee;Sohn Young-Jun;Park Jungsun;Lee Won-Yong;Kim Chang-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF

CFD Modeling of Pesticide Flow and Drift from an Orchard Sprayer (과수원용 스프레이어의 농약 살포 및 비산 예측을 위한 전산유체해석)

  • Hong, Se-Woon;Kim, Rack-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.27-36
    • /
    • 2018
  • Effective pesticide applications are needed to assure the quality and economic competitiveness of fruit production and lower the risk of spray drift. Experimental studies have shown that better spray coverage and less driftability require an understanding of the transport of spray droplets within turbulent airflows in the orchard and the interaction between droplet dynamics and tree canopies. This study developed a computational fluid dynamics (CFD) model to predict pesticide flows in the orchard and spray drift discharged from an air-assisted orchard sprayer. The model represented the transport of spray droplets as well as droplets captured by tree canopies, which were modeled as a conical porous model and branched tree model. Validation of the CFD model was accomplished by comparing the CFD results with field measurements. Spray depositions inside tree canopies and at off-target locations were in good agreement with the measurements. The resulting data presented that 38.6%~42.3% of the sprayed droplets were delivered to the tree canopies while 13.6%~20.1% were drifted out of the orchard, part of them reached farther than 200 m from the orchard. The study demonstrates that CFD model can be used to evaluate spray application performance and spray drift potential.

Numerical Study on the Effect of Reactor Internal Structure Geometry Treatment Method on the Prediction Accuracy for Scale-down APR+ Flow Distribution (원자로 내부 구조물 형상 처리 방법이 축소 APR+ 유동분포 예측 정확도에 미치는 영향에 관한 수치적 연구)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.271-277
    • /
    • 2014
  • Internal structures, especially those located in the upstream of a reactor core, may have a significant influence on the core inlet flow rate distribution depending on both their shapes and the relative distance between the internal structures and the core inlet. In this study, to examine the effect of the reactor internal structure geometry treatment method on the prediction accuracy for the scale-down APR+ flow distribution, simulations with real geometry modeling were conducted using ANSYS CFX R.14, a commercial computational fluid dynamics software, and the predicted results were compared with those of the porous medium assumption. It was concluded that the core inlet flow distribution could be predicted more accurately by considering the real geometry of the internal structures located in the upstream of the core inlet. Therefore, if sufficient computational resources are available, an exact representation of these internal structures, for example, lower support structure bottom plate and ICI nozzle support plate, is needed for the accurate simulation of the reactor internal flow.