• 제목/요약/키워드: Porous Model

검색결과 742건 처리시간 0.026초

열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구 (Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

다공 세라믹 연소기 속에서의 예혼합연소에 대한 민감도 해석의 적용 (Application of sensitivity analyses in premixed combustion within a porous ceramic burner)

  • 임인권
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.162-172
    • /
    • 1998
  • A numerical study of premixed combustion within a porous ceramic burner (PCB) is performed to understand flame behavior with respect to various model parameters. Basic flame structure within the porous ceramic burner and species profiles such as NO and CO are examined. Sensitivity analysis of flame speed, gas and solid temperature, NO and CO emission from the burner with respect to reaction steps and various physical properties of the ceramic material is applied to find the most significant parameters in selection of porous materials for the porous ceramic burner. Effects of thermal conductivity, extinction coefficient and scattering albedo on the burner characteristics are studied through the sensitivity analysis. The results of sensitivity study reveal the order of importance in ceramic material properties to get suitable burner performance. Scattering albedo, which governs the ratio of absorbed energy by the ceramic material to total radiative energy transferred, is one of the most important parameters in the material properties since it affects the actual absorbed radiation rate and thus it largely affects the flame structure. Through the study, it is found that the sensitivity study can be used to estimate the flame behavior within the porous ceramic burner more effectively.

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.

다공성 매질의 물리적 특성 변화에 따른 유체흐름의 비선형 거동에 대한 수치적 분석 (A numerical investigation on nonlinear behavior of fluid flow with variation of physical properties of a porous medium)

  • 정우창
    • 한국수자원학회논문집
    • /
    • 제50권5호
    • /
    • pp.325-334
    • /
    • 2017
  • 본 연구에서는 다공성 매질의 공극율과 투수능 그리고 유체의 동점성 계수와 같은 물리적 특성에 따른 유체흐름의 비선형 거동에 대한 수치적 분석을 수행하였다. 적용된 수치모형은 ANSYS CFX 3차원 유동해석 모형이며, 모형의 검증은 기존의 물리적 실험 결과 및 수치모의 결과의 적용을 통해 수행되었으며, 적용된 압력경사와 유속과의 관계 그리고 마찰계수와 레이놀즈 수와의 관계에 대해 비교적 잘 일치하였다. 다공성 매질의 공극율과 투수능 그리고 유체의 동점성 계수의 값을 변화시키면서 모의한 결과 유체의 동점성 계수가 다공성 매질의 유체흐름의 비선형 거동에 가장 큰 영향을 미치는 것으로 나타났다.

다공성 단열재를 포함한 열방어구조의 열 특성 분석 (Thermal Characteristic Analysis of Thermal Protection System with Porous Insulation)

  • 황경민;김용하;이정진;박정선
    • 항공우주시스템공학회지
    • /
    • 제10권4호
    • /
    • pp.26-34
    • /
    • 2016
  • 본 논문에서는 다공성 단열재의 정확도가 높은 유효 열전도율 예측 모델을 새롭게 제안하고, 기존 예측 모델 및 시험 결과와 비교 검증하였다. 이를 위해 기존 유효 예측 모델들을 다공성 단열재의 고체 부피율에 따른 열전도율 시험 결과 값과 비교하였다. 그리고 고체의 부피율에 따른 유효 열전도율 시험결과와 비교하여 가장 높은 정확도를 가진 Zehner-Schlunder 모델 및 시험 결과 데이터를 기반으로 고체-유체의 부피율과 열전도율 비로 구성된 다항식을 추가하여, 새로운 유효 열전도율 예측 모델을 정의하였다. 예측 모델을 시험 결과와 비교하여 검증하였다. 또한 예측 모델을 적용하여 열방어구조의 과도 열전달 해석을 수행하였으며, 열전달 시험 결과와의 비교를 통해 유효 열전도율 예측 모델의 유효성을 확인하였다.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.

Nonlinear static analysis of functionally graded porous beams under thermal effect

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.399-415
    • /
    • 2017
  • This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.

Buckling analysis of sandwich plates with functionally graded porous layers using hyperbolic shear displacement model

  • Hadji, Lazreg
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.19-30
    • /
    • 2021
  • This study presents buckling analysis of a simply supported sandwich plate with functionally graded porous layers. In the kinematic relation of the plate, a hyperbolic shear displacement model is used. The governing equations of the problem are derived by using the principle of virtual work. In the solution of the governing equations, the Navier procedure is implemented. In the porosity effect, four different porosity types are used for functionally graded sandwich layers. In the numerical examples, the effects of the porosity parameters, porosity types and geometry parameters on the critical buckling of the functionally graded sandwich plates are investigated.

압축식 제습기에 대한 수치해석 연구 : (II) 열전달 (Numerical Analysis of A Compressor Type of Dehumidifier : (II) Heat Transfer)

  • ;;김규목;정재동
    • 설비공학논문집
    • /
    • 제30권2호
    • /
    • pp.92-99
    • /
    • 2018
  • A numerical analysis of a compressor dehumidifier has been conducted focusing on the air side heat transfer, which is a part of a series research on the dehumidifier. The moving reference frame was applied to the fan modeling, and the porous model was used for the evaporator and condenser modeling. Curve fitting obtained the inertial and viscous resistances parameters to the results of the physical model of the unit cell with actual shape of a fin tube. The porous model was validated within a reasonable computation time for the range of practical inlet velocity of a dehumidifier. A parametric study has been conducted for fin number, fan speed (i.e., air flow rate), and evaporator/condenser tube arrangement. ANOVA analysis showed the dependency of each parameter on the velocity and temperature uniformity, which are desirable for high performance of the dehumidifier.

N개의 투과성 원기둥 배열에 의한 파랑제어 (Wave Control by an Array of N Bottom-Mounted Porous Cylinders)

  • 조일형
    • 한국해안해양공학회지
    • /
    • 제15권4호
    • /
    • pp.232-241
    • /
    • 2003
  • 3차원 선형포텐셜 이론아래에서 해저면 바닥에 고정된 N개의 투과성 원기둥과 입사파의 상호작용 문제를 살펴보았다. 유체영역을 때의 외부영역과 N개의 내부영역으로 나누고, 각 유체영역에서의 회절포텐셜을 고유함수전개법에 의해 표현하였다(Williams and Li, 2000). 투과성 구조물은 파력과 처올림 파형을 크게 줄일 수 있다는 사실을 해석결과는 보여주고 있다. 개발된 해석모델을 검증하기 위하여 일렬로 배열한 투과성 원기둥들을 가지고 조파수조(30m $\times$ 7m $\times$ 1.5m)에서 체계적인 모형실험을 수행하였다. 해석결과와 모형실험결과는 정성적으로 잘 일치하고 있음을 확인하였다. 투과성 원기둥을 일렬로 배열하여 만든 방파제는 해수교환뿐 아니라 우수한 소파성능을 가지고 있어 미래의 해수교환방파제로써 무한한 잠재력이 있다고 판단된다.