• Title/Summary/Keyword: Porous Model

Search Result 742, Processing Time 0.025 seconds

A Study on the Performance Analysis and Design of Cathode in Fuel Cells (연료전지 전극(Cathode)의 성능해석 및 설계에 관한 연구)

  • Kim, H.G.;Kang, S.S.;Song, H.Y.;Kang, Y.W.;Kwac, L.K.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.75-79
    • /
    • 2007
  • The cathode design is one of the most important parts in order to enhance the performance of fuel cells. A 3-D model of the porous oxygen reducing cathode with perforated current collectors is analysed for the enhanced design in fuel cells. Simulation is performed using equations of electric potential balance, momentum balance, and mass balance. The gas concentrations are quite large and are significantly affected by the reactions that take place. The weight fraction of oxygen, velocity field for the gas phase, and local overvoltage are illustrated in the porous reactive cathode layer. The current density is also analysed and the result shows the distribution and variation are stated in a wide range. It is found that the rate of reaction and the current production is higher beneath the orifice, and decreases as the distance to the gas inlet increases. The significance of the results is discussed in the viewpoint of the mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in this design and at these conditions.

Development of Image-based Fluorescence Photobleaching Technique for Measuring Macromolecule Diffusion in Biological Porous Medium (생체 다공성 매질에서 분자 확산 측정을 위한 영상 기반 형광 광표백 기법 개발)

  • Lee, Dong-Hee;Lee, Jeong-Hoon;Park, Choon-Ho;Kim, Jung-Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • Fluorescence recovery after photobleaching (FRAP) has been widely used for the measurement of molecular diffusion in living cells and tissues. We developed an image-based FRAP (iFRAP) technique using a modified real-time microscope and a 488 nm Ar-ion laser. A fractional intensity curve was obtained from the time-lapse images of fluorescence recovery in the bleached spot to determine the diffusion coefficient of fluorescently labeled macromolecules in porous medium. We validated iFRAP through experiments with agar gels (0.5% and 1.5% w/v) containing FITC-Dextrans (10, 70 and 500 kDa MW). Further validation was performed by a Monte Carlo approach, where we simulated the three-dimensional random walk of macromolecules in agar gel model. Diffusion coefficients were deduced from the mean square displacement curves and showed good agreements with those measured by iFRAP.

Study on methane hydrate production using depressurization method (감압법을 이용한 메탄 하이드레이트 생산에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose many kinds of guest(gas) molecules. There are plenty of methane(gas) hydrate in the earth and distributed widely at offshore and permafrost. Several schemes, to produce methane hydrates, have been studied. In this study, depressurization method has been utilized for the numerical model due to it's simplicity and effectiveness. IMPES method has been used for numerical analysis to get the saturation and velocity profile of each phase and pressure profile, velocity of dissociation front progress and the quantity of produced gas. The values calculated for the sample length of 10m, show that methane hydrates has been dissolved completely in approximately 223 minutes and the velocity of dissociation front progress is 3.95㎝ per minute. The volume ratio of the produced gas in the porous media is found to be about 50%. Analysing the saturation profile and the velocity profile from the numerical results, the permeability of each phase in porous media is considered to be the most important factor in the two phase flow propagation. Consequently, permeability strongly influences the productivity of gas in porous media for methane hydrates.

Effect of the Hydraulic Boundary Layer on the Convective Heat Transfer in Porous Media (유동 경계층이 다공성물질내 대류 열전달에 미치는 영향)

  • Jin, Jae-Seek;Lee, Dae-Young;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1119-1127
    • /
    • 2000
  • Convective heat transfer in a channel filled with porous media has been analyzed in this paper. The two-equation model is applied for the heat transfer analysis with the velocity profile, considering both the inertia and viscous effects. Based on a theoretical solution, the effect of the velocity profile on the convective heat transfer is investigated in detail. The Nusselt number is obtained in terms of the relevant physical parameters, such as the Biot number for the internal heat exchange, the ratio of effective conductivities between the fluid and solid phases, and hydraulic boundary layer thickness. The results indicate that the influence of the velocity profile is characterized within two regimes according to the two parameters, the Biot number and the conductivity ratio between the phases. The decrease in the heat transfer due to the hydraulic boundary layer thickness is 15% at most within a practical range of the pertinent parameters.

Two-Phase Flow Field Simulation of Horizontal Steam Generators

  • Rabiee, Ataollah;Kamalinia, Amir Hossein;Hadad, Kamal
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage (초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구)

  • Ro, Seung-Kook;Kim, Soo-Hyun;Kwak, Yoon-Keun;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

The critical buckling load of reinforced nanocomposite porous plates

  • Guessas, Habib;Zidour, Mohamed;Meradjah, Mustapha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • By using the first order shear deformation plate theory (FSDT) in the present paper, the effect of porosity on the buckling behavior of carbon nanotube-reinforced composite porous plates has been investigated analytically. Two types of distributions of uniaxially aligned reinforcement material are utilized which uniformly (UD-CNT) and functionally graded (FG-CNT) of plates. The analytical equations of the model are derived and the exact solutions for critical buckling load of such type's plates are obtained. The convergence of the method is demonstrated and the present solutions are numerically validated by comparison with some available solutions in the literature. The central thesis studied and discussed in this paper is the Influence of Various parameters on the buckling of carbon nanotube-reinforced porous plate such as aspect ratios, volume fraction, types of reinforcement, the degree of porosity and plate thickness. On the question of porosity, this study found that there is a great influence of their variation on the critical buckling load. It is revealed that the critical buckling load decreases as increasing coefficients of porosity.

Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate

  • Salari, Erfan;Ashoori, Alireza;Vanini, Seyed Ali Sadough
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • This research is aimed at studying the asymmetric thermal buckling of porous functionally graded (FG) annular nanoplates resting on an elastic substrate which are made of two different sets of porous distribution, based on nonlocal elasticity theory. Porosity-dependent properties of inhomogeneous nanoplates are supposed to vary through the thickness direction and are defined via a modified power law function in which the porosities with even and uneven type are approximated. In this model, three types of thermal loading, i.e., uniform temperature rise, linear temperature distribution and heat conduction across the thickness direction are considered. Based on Hamilton's principle and the adjacent equilibrium criterion, the stability equations of nanoporous annular plates on elastic substrate are obtained. Afterwards, an analytical solution procedure is established to achieve the critical buckling temperatures of annular nanoplates with porosities under different loading conditions. Detailed numerical studies are performed to demonstrate the influences of the porosity volume fraction, various thermal loading, material gradation, nonlocal parameter for higher modes, elastic substrate coefficients and geometrical dimensions on the critical buckling temperatures of a nanoporous annular plate. Also, it is discussed that because of present of thermal moment at the boundary conditions, porous nanoplate with simply supported boundary condition doesn't buckle.

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.67-81
    • /
    • 2022
  • While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.

Assessing pollutants' migration through saturated soil column

  • Smita Bhushan Patil;Hemant Sharad Chore;Vishwas Abhimanyu Sawant
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 2023
  • In the developing country like India, groundwater is the main sources for household, irrigation and industrial use. Its contamination poses hydro-geological and environmental concern. The hazardous waste sites such as landfills can lead to contamination of ground water. The contaminants existing at such sites can eventually find ingress down through the soil and into the groundwater in case of leakage. It is necessary to understand the process of migration of pollutants through sub-surface porous medium for avoiding health risks. On this backdrop, the present paper investigates the behavior of pollutants' migration through porous media. The laboratory experiments were carried out on a soil-column model that represents porous media. Two different types of soils (standard sand and red soil) were considered as the media. Further, two different solutes, i.e., non-reactive and reactive, were used. The experimental results are simulated through numerical modeling. The percentage variation in the experimental and numerical results is found to be in the range of 0.75- 11.23 % and 0.84 - 1.26% in case of standard sand and red soil, respectively. While a close agreement is observed in most of the breakthrough curves obtained experimentally and numerically, good agreement is seen in either result in one case.