• Title/Summary/Keyword: Porous Model

Search Result 742, Processing Time 0.026 seconds

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

Combination resonances of porous FG shallow shells reinforced with oblique stiffeners subjected to a two-term excitation

  • Kamran Foroutan;Liming Dai;Haixing Zhao
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.391-406
    • /
    • 2024
  • The present research investigates the combination resonance behaviors of porous FG shallow shells reinforced with oblique stiffeners and subjected to a two-term excitation. The oblique stiffeners considered in this research reinforce the shell internally and externally. To model the stiffeners, Lekhnitskii's smeared stiffeners technique is utilized. According to the first-order shear deformation theory (FSDT) and stress functions, a nonlinear model of the oblique stiffened shallow shell is established. With regard to the FSDT and von-Kármán nonlinear geometric assumptions, the stress-strain relationships for the present shell system are developed. Also, in order to discretize the nonlinear governing equations, the Galerkin method is implemented. To obtain the required relations for investigating the combination resonance theoretically, the method of multiple scales is applied. For verifying the results of the present research, generated results are compared with previous research. Additionally, a comparison with the P-T method is conducted to increase the validity of the generated results, as this method has illustrated advantages over other numerical methods in terms of accuracy and reliability. In this method, the piecewise constant argument is used jointly with the Taylor series expansion, which is why it is named the P-T method. The effects of stiffeners with different angles, and the effects of material parameters on the combination resonance behaviors of the present system are addressed. With the findings of this research, researchers and engineers in this field may use them as benchmarks for their design and research of porous FG shallow shells.

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fatima, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.85-107
    • /
    • 2020
  • Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.

Mechanistic Model of Dryout in a Heat-Generating Porous Medium

  • Kim, Seong-Ho;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.537-542
    • /
    • 1996
  • In the present work the influence of various physical parameters on the two-phase flow behavior in a self-heated porous medium has been studied using a numerical model, that is, the effects of heat generation rate, of porosity, of particle size, and of system pressure on the dryout process. To analyze the effect of these parameters, the variation of both liquid volumetric fraction and liquid axial velocity is evaluated at the steady state or at the onset of a first boiled-out region. The analysis of computational results indicate that a qualitative tendency exists between the parameters such as heat generation rate, porosity, effective particle diameter and the temporal development of the liquid volumetric fraction field up to dryout. In addition to these parameters, a variation of fluid properties such as phase density, phase viscosity due to a change of system pressure can be used for gaining insight into the nature of two-phase flow behavior up to dryout.

  • PDF

An investigation on analysis of heavy vehicle cooling fan system by radiator consideration and blade number (대형차량용 냉각팬 날개수 및 주변장치에 의한 압력강하에 따른 성능해석 연구)

  • Kim, Joo-Han;Jung, In-Soung;Hur, Nahm-Keon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.213-213
    • /
    • 2011
  • 본 논문에서 연구하고자 하는 팬은 대형 차량용 라디에이터 냉각팬으로써 수치해석을 통한 일반적인 팬의 성능 평가시 팬과 쉬라우드의 형상만을 이용하여 시뮬레이션 하지만 라디에이터를 거쳐 공기가 유입되는 실제 현상에 좀 더 가깝게 모사하고자 라디에이터의 압력 부하를 고려한 시뮬레이션을 수행하였고 기존 해석 결과와 비교하였다. 연구된 냉각팬은 쉬라우드의 전방에 라디에이터가 설치되며 라디에이터를 통하여 공기가 유입되기 때문에 라디에이터의 압력 부하에 따라 팬 성능에 영향을 준다. 라디에이터의 압력 부하 성능을 모사하기 위하여 쉬라우드 입구에 박스 형태로 라디에이터의 외부 크기를 모델링 한 후 수치해석 시 porous media model을 사용하여 풍속에 따른 압력 강하 곡선을 적용하였다. 수치해석에서 porous media model을 적용할 경우 실제적인 형상 모델링 없이도 실험으로부터 도출한 성능곡선을 조건으로 입력하여 실제 현상에 가까운 시뮬레이션을 할 수 있다. 그리고 팬 날개수 증가에 따른 해석을 수행하여, 날개수 변경에 따른 성능개선의 여지를 확인 하였다.

  • PDF

Plume Interference Effect on a Missile Body and Its Control (미사일 동체에서 발생하는 Plume 간섭 효과와 제어)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong;Szwaba, Ryszard
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1730-1735
    • /
    • 2003
  • The plume-induced shock wave is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The knowledge base of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation particularly at high plume to exit pressure ratio. Test model configurations are a simplified missile model and two rounded and porous afterbodies to simulate moderately and highly underexpanded exhaust plumes at the transonic/supersonic speeds. The result shows that the rounded afterbody and porous wall attached at the missile base can alleviate the plume-induced shock wave phenomenon, and improve the control of the missile body.

  • PDF

Walsh Analysis of the State of Mixture in Heterogeneous Media and its Application (비균질체의 혼합상태에 대한 Walsh해석과 응용)

  • 박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.164-169
    • /
    • 1986
  • Walsh analysis is applied to the numerical specification of the volume distribution which is the key parameter in the formulation of the constitutive equations of heterogeneous media, indicating the geometrical state of the mixture. An example of two-dimensional volume distribution, its approximation, and the Walsh correlation coefficients are presented and the change of the information distribution in the operations is investigated. The phenomena of information concentration upon the large-scale Walsh coefficients are applied to the volumetric response of porous slids, clarifying the validity of the spherical-model calculation.

Study on dryout heat flux of axial stratified debris bed under top-flooding

  • Wenbin Zou;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.636-643
    • /
    • 2024
  • The coolability of the debris bed with a simulant of solidified corium is experimentally studied, focusing on the effects of the structure of the axial stratified debris bed on the dryout heat flux (DHF). DHF was obtained for the four structures with different particle sizes for the axial stratified debris bed under top flooding. The experimental results show that the dryout position of the axial stratified debris bed is formed at the stratified interface indicated by the temperature rise, and the DHF of the axial stratified bed is much lower than that of the homogeneous bed packed with the upper small particles. To predict the dryout heat flux of the stratified debris beds, by considering the properties of the mixed area, a one-dimensional dryout heat flux model of the porous medium is derived from a water and vapor momentum equation for porous medium, two-phase permeability modifications, interfacial drag, and the correlation between capillary pressure and liquid saturation and verified with the experimental data. The modified model can give reasonable results under different structures.

A Study about Effectiveness and Usefulness of a FEM Slug Test Model (유한 요소기법을 이용한 Slug시험 모델의 타당성 및 유용성 연구)

  • 한혜정;최종근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Slug tests are the most widely used field method for quantification of hydraulic conductivity of porous media. Well recovery is affected by well casing, borehole radii, screened length, hydraulic conductivity, and specific storage of porous media. In this study, a new slug tests model was developed through finite element approximation and the validity and usefulness of the model were tested in various ways. Water level fluctuation in a well under slug test and cons-equent groundwater flow in the surrounding porous medium were appropriately coupled through estimation of well-flux using an iteration technique. Numerical accuracy of the model was verified using the Cooper et al. (1967) solution. The model has advantages in simulations for monitored slug tests, partial penetration, and inclusion of storage factor. Volume coverage of slug tests is significantly affected by storage factor. Magnitude and speed of propagation of head changes from a well increases as storage factor becomes low. It will be beneficial to use type curves of monitored head transients in the surrounding porous formation for estimation of specific storage. As the vertical component of groundwater flow is enhanced, the influence of storage factor on well recovery decreases. For a radial-vertical flow around a partially penetrated well, deviations between hydraulic estimates by various methods and data selection of recovery curve are negligible on practical purposes, whereas the deviations are somewhat significant for a radial flow.

  • PDF