• Title/Summary/Keyword: Porous Coefficient

Search Result 339, Processing Time 0.028 seconds

Fabrication of Anorthite for Low-Firing Ceramic Substrate by PVA Steric-Entrapment Route (폴리머 고착공정을 통한 저온소성기판용 Anorthite의 제조)

  • Kim, Gwang-Seok;Lee, Chung-Hyo;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.595-599
    • /
    • 2002
  • A homogeneous and stable, amorphous-type, anorthite (CaO $Al_2$$O_3$ $2SiO_2$)powder was synthesized by an organic-inorganic steric entrapment route. Polyvinyl alcohol ( PVA) was used as an organic carrier for the precursor ceramic gel. The PVA content, its degree of polymerization and type of silica sol had a significant influence on the calcination and crystallization behavior of the precursors. For densifiction and crystallization at low temperature, porous and soft, amorphous-type anorthite powder was planetary milled for 20h. The milled powder crystallized to stable anorthite phase and densified to a relative density of 94% below $1000^{\circ}C$. In the development of crystalline phases of the planetary milled powder, omisteinbergite phase was unusually observed at $900^{\circ}C$, and then anorthite was observed at $950^{\circ}C$. The sintered anorthite had a thermal expansion coefficient of $4.6$\times$10^{-6}$ /$^{\circ}C$ and a dielectric constant of 7.5 at 1 MHz. Finally, the anorthite synthesized by the new process is expected to be an useful material for low-firing ceramic substrate.

A Study of Optical Characteristics Correlated with Low Dielectric Constant of SiOCH Thin Films Through Ellipsometry (Ellipsometry를 이용한 저 유전상수를 갖는 SiOCH박막의 광학특성 연구)

  • Park, Yong-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.228-233
    • /
    • 2010
  • We studied the optical characteristics correlated with low dielectric constants of low-k SiOCH thin films through ellipsometry. The low-k SiOCH thin films were prepared by CCP-PECVD method using BTMSM(Bis-trimethylsilylmethane) precursors deposited on p-Si wafer. The Si-O-CHx, Si-O-Si, Si-CHx, CHx and Si-H bonding groups were specified by FTIR spectroscopic spectra, and the groups coupled with the nano-porous structural organic/inorganic hybrid-type of SiOCH thin films which has extremely low dielectric constant close to 2.0. The structural groups includes highly dense pore as well as ions in SiOCH thin films affecting to complex refraction characteristics of single layer on the p-Si wafer. The structural complexity originate the complex refractive constants of the films, and resulted the elliptical polarization of the incident linearly polarized light source of Xe-light source in the range from 190 nm to 2100 nm. Phase difference and amplitude ratio between s wave and p wave propagating through SiOCH thin film was studied. After annealing, the amplitude of p wave was reduced more than s wave, and phase difference between p and s wave was also reduced.

ENHANCEMENT THE SOUND TRANSMISSION LOSS OF POROELASTIC LININGS

  • Song, B.Heuk-Jin;Bolton, J.Stuart
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.606-611
    • /
    • 2000
  • It has been noted that the low frequency absorption coefficient of a porous sample placed in a standing wave tube is affected by the nature of the sample's edge constraint. The edge constraint has the effect of stiffening the solid phase of the sample, which itself can be strongly coupled to the material's fluid phase, and hence the incident sound field, by viscous means at low frequencies. In recent work it has also been shown that such a circumferential constraint causes the low frequency transmission loss of a layer of fibrous material to approach a finite low frequency limit that is proportional to the flow resistance of the layer and which is substantially higher than that of an unconstrained sample of the same material. However, it was also found that the benefit of the circumferential edge constraint was reduced in a transitional frequency range by a shearing resonance of the sample. Here it will be shown that the effect of that resonance can be mitigated or eliminated by adding additional axial and radial constraints running through the sample. It will also be shown that the constraint effect can be modeled closely by using a finite element procedure based on the Biot poroelastic theory. Implications for low frequency barrier design are also discussed.

  • PDF

Development of a Mathematical Model for Simulating Removal Mechanisms of Heavy Metals using Biocarrier Beads (미생물 담체를 이용한 납 제거기작 모의를 위한 수학적 모델의 개발)

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.8-18
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in biocarrier beads and surrounding solution were established. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.

Comparison of Characterization Techniques of the Pore in Paper Sheet (종이의 기공 특성 측정 기법의 비교)

  • Won, Jong-Myoung;Nam, Ki-Young;Chung, Soon-Ki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • Paper is a composite consisted of various solid materials including pulp, filler and other additives. The pore is also one of components consisting the paper structure. Thus the characterization of pore structure of paper is very helpful in the understanding the structural properties of paper. Mercury intrusion technique is frequently used for the characterization of the porous paper, giving access to parameters such as pore size and pore distribution. But some researchers pointed out the problem that the distortion of the pore structure can be occurred by the application of high pressure during mercury intrusion. Thus in this study, we tried to evaluate the potential of SEM and image analysis method as means for analyzing pore structure of the paper. The new pore analysis technique with SEM and image analysis does not require the application of high pressure, and gave better relation between the measured pore characteristics and the bulk of sheet than mercury intrusion method.

A Study on the Characteristics of ALC Material with Melamine Resin (멜라민 수지를 혼합한 ALC 소재의 특성에 관한 연구)

  • Seo, Sung-Kwan;Chu, Yong-Sik;Song, Hun;Lee, Jong-Kyu;Im, Du-Hyuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.595-599
    • /
    • 2011
  • ALC(Autoclaved Lightweight Concrete) is produced using quartz sand, lime and cement and water. And aluminum powder is used for blowing agent. ALC is manufactured by autoclave chamber under high-temperature and high-pressure. Generally, ALC is 1/4 levels lighter than concrete and mortar, because it has a lot of pores. So density of ALC is about 0.45~0.65 g/$cm^3$. But, ALC has a weakness, typically low strength, with its porous structure. So, it is necessary to excellent strength properties for extensive apply of ALC materials in high porosity. In this study, melamine resin was used to improve the strength characteristics of ALC materials. We performed compressive and bending strength measurements. Compressive strength of ALC with 2% melamine resin increased 26.88% than 'melamine-free' ALC. Also we performed functionality evaluation such as thermal conductivity, sound absorption, and flame-resistance.

The Permeability Characteristics of the Reactive Soil - Bentonite Landfill Liner (혼합반응 차수재의 투수특성 연구)

  • 이강원;황의석;안기봉;정하익;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.545-552
    • /
    • 2002
  • The purpose of this paper is to investigate permeability characteristic of soil-bentonite landfill liner and development of desirable liner system. In this study, permeability tests for soil-bentonite, reactive soil-bentonite and apply bentomat and reactive mat are carried out under the low and high water pressure. According to test result, additional amount of bentonite decreases the coefficient of permeability up to the bentonite mixture ratio of 15%. Therefore, the permeability test for landfill liner's indicated that the use of general water would be in more safe side because the liner system show low permeability duet decrease effect of porous by suspended soild(SS). The permeability of leachate for Zeolite mixture ratio 0, 5, 10% with bentonite mixture ratio 15% showed negligible variation in the permeability with general water. Therefore, Zeolite could be used as a successful that is available purification material for the treatment of leachate, without changing the of landfill liners. Also odious smell could be removed by adding smell amount of Zeolite to the leachate. It was revealed that the bentomat and reactive mat installed in soil-bentonite layer effectively improved the permeability as well as purification of the leachate.

  • PDF

Development of an Acoustic-Based Underwater Image Transmission System

  • Choi, Young-Cheol;Lim, Yong-Kon;Park, Jong-Won;Kim, Sea-Monn;Kim, Seung-Geun;Kim, Sang-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.109-114
    • /
    • 2003
  • Wireless communication systems are inevitable for efficient underwater activities. Because of the poor propagation characteristics of light and electromagnetic waves, acoustic waves are generally used for the underwater wireless communication. Although there are many kinds of information type, visual images take an essential role especially for search and identification activities. For this reason, we developed an acoustic-based underwater image transmission system under a dual use technology project supported by MOCIE (Ministry of Commerce, Industry and Energy). For the application to complicated and time-varying underwater environments all-digital transmitter and receiver systems are investigated. Array acoustic transducers are used at the receiver, which have the center frequency of 32kHz and the bandwidth of 4kHz. To improve transmission speed and quality, various algorithms and systems are used. The system design techniques will be discussed in detail including image compression/ decompression system, adaptive beam- forming, fast RLS adaptive equalizer, ${\partial}/4$ QPSK (Quadrilateral Phase Shift Keying) modulator/demodulator, and convolution coding/ Viterbi. Decoding.

  • PDF

A Numerical Solution of Transport of Mono- and Tri-valent Cations during Steady Water Flow in a Binary Exchange System

  • Ro, Hee-Myong;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • A one-dimensional transport of displacing monovalent ion, $A^+$, and a trivalent ion being displaced, $B^{3+}^ in a porous exchange system such as soil was approximated using the Crank-Nicolson implicit finite difference technique and the Thomas algorithm in tandem. The variations in the concentration profile were investigated by varying the ion-exchange equilibrium constant (k) of ion-exchange reactions, the influent concentrations, and the cation exchange capacity (CEC) of the exchanger, under constant flux condition of pore water and dispersion coefficient. A higher value of k resulted in a greater removal of the native ion, behind the sharper advancing front of displacing ion, while the magnitude of the penetration distance of $A^+$ was not great. As the CEC increased, the equivalent fraction of $B^{3+}^ initially in the soil was greater, thus indicating that a higher CEC adsorbed trivalent cations preferentially over monovalent ions. Mass balance error from simulation results was less than 1%, indicating this model accounted for instantaneous charge balance fairly well.

  • PDF

Numerical modelling of shelter effect of porous wind fences

  • Janardhan, Prashanth;Narayana, Harish
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.313-321
    • /
    • 2019
  • The wind blowing at high velocity in an open storage yard leads to wind erosion and loss of material. Fence structures can be constructed around the periphery of the storage yard to reduce the erosion. The fence will cause turbulence and recirculation behind it which can be utilized to reduce the wind erosion and loss of material. A properly designed fence system will produce lesser turbulence and longer shelter effect. This paper aims to show the applicability of Support Vector Machine (SVM) to predict the recirculation length. A SVM model was built, trained and tested using the experimental data gathered from the literature. The newly developed model is compared with numerical turbulence model, in particular, modified $k-{\varepsilon}$ model along with the experimental results. From the results, it was observed that the SVM model has a better capability in predicting the recirculation length. The SVM model was able to predict the recirculation length at a lesser time as compared to modified $k-{\varepsilon}$ model. All the results are analyzed in terms of statistical measures, such as root mean square error, correlation coefficient, and scatter index. These examinations demonstrate that SVM has a strong potential as a feasible tool for predicting recirculation length.