• Title/Summary/Keyword: Porosity ceramics

Search Result 201, Processing Time 0.033 seconds

Three Dimensionally Ordered Microstructure of Polycrystalline Zirconia Ceramics with Micro-Porosity

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • In order to make a highly ordered three-dimensionally macro-porous structure of zirconia ceramics, porogen precursors PMMA beads were prepared by emulsion polymerization using acrylic monomer. The monodisperse PMMA latex beads were closely packed by centrifugation as a porogen template for the infiltration of zirconium acetate solution. The mixed compound of PMMA and zirconium acetate was dried. According to the firing schedule, dry compacts of PMMA and zirconium acetate were calcined at $475^{\circ}C$ to obtain micro-, macro-, and meso- structures of polycrystalline zirconia with monodispersed porosity. Inorganic frameworks composed of $ZrO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $ZrO_2$ ceramics. The obtained $ZrO_2$ skeleton was calcined at $710^{\circ}C$. The 3DOM $ZrO_2$ skeleton showed color tuning in solutions such as deionized [DI] $H_2O$ and/or methanol. The monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM.

Fabrication of Porous Alumina Ceramics Using Hollow Microspheres as the Pore-forming Agent

  • Nie, Zhengwei;Lin, Yuyi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2015
  • Porous alumina ceramics with two different pore sizes were fabricated using hollow microspheres as the pore-forming agent. The relative density, total porosity, and microstructure of the obtained alumina ceramics were studied. It was found that the total porosity of sintered samples with different amounts of hollow microsphere content, from 2.0 to 4.0 wt%, was 69.3-75.6%. The interconnected and spherical cell morphology was obtained with 3.0 wt% hollow microsphere content. The resulting ceramics consist of a hierarchical structure with large-sized cells, and small-sized pores in the cell walls. Moreover, the compressive strength of the sintered samples varied from 8.3-11.5 MPa, corresponding to hollow microsphere contents of 2.0-4.0 wt%.

Three Dimensionally Ordered Microstructure of Polycrystalline TiO2 Ceramics with Micro/meso Porosity

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.227-233
    • /
    • 2016
  • In order to make a highly ordered three-dimensional porous structure of titania ceramics, porogen beads of PS [Polystyrene] and PMMA [poly(methylmetacrylate)] were prepared by emulsion polymerization using styrene monomer and methyl methacrylate monomer, respectively. The uniform beads of PS or PMMA latex were closely packed by centrifugation as a porogen template for the infiltration of titanium butoxide solution. The mixed compound of PS or PMMA with titanium butoxide was dried and the dry compacts were calcined at $450^{\circ}C-750^{\circ}C$ according to the firing schedule to prepare micro- and meso- structures of polycrystalline titania with monodispersed porosity. Inorganic frameworks composed of $TiO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $TiO_2$ ceramics. The pulverized particles of the $TiO_2$ ceramic skeleton were characterized using XRD analysis. A monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM with EDX analysis. The 3DOM $TiO_2$ skeleton showed opalescent color tuning according to the direction of light.

Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-Bonded Al2O3 Ceramics (Frit 함량이 다공질 Frit-Bonded 알루미나 세라믹스의 미세조직과 꺾임강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Song, In-Hyuck;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.529-533
    • /
    • 2010
  • Porous frit-bonded alumina ceramics were fabricated using alumina and frit as raw materials. The effects of frit content and sintering temperature on microstructure, porosity, and flexural strength were investigated at low temperature of $750{\sim}850^{\circ}C$. Increased addition of frit content or higher sintering temperature resulted in improved flexural strength of porous frit-bonded alumina ceramics. It was possible to produce frit-bonded alumina ceramics with porosities ranging from 35% to 40%. A maximum strength of 52MPa was obtained at a porosity of ~38% when 90 wt% alumina and 10 wt% frit powders were used.

Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane (SiC 필러 함량이 탄소 함유 Polysiloxane으로부터 제조된 고기공률 탄화규소 세라믹스의 미세조직과 꺾임강도에 미치는 영향)

  • Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.625-630
    • /
    • 2012
  • Highly porous silicon carbide (SiC) ceramics were fabricated from polysiloxane, SiC and carbon black fillers, AlN-$Y_2O_3$ additives, and poly (ether-co-octene) (PEOc) and expandable microsphere templates. Powder mixtures with a fixed PEOc content (30 wt%) and varying SiC filler contents from 0-21 wt% were compression-molded. During the pyrolysis process, the polysiloxane was converted to SiOC, the PEOc generated a considerable degree of interconnected porosity, and the expandable microspheres generated fine cells. The polysiloxane-derived SiOC and carbon black reacted and synthesized nano-sized SiC with a carbothermal reduction during a heat-treatment. Subsequent sintering of the compacts in a nitrogen atmosphere produced highly porous SiC ceramics with porosities ranging from 78 % to 82 % and a flexura lstrength of up to ~7 MPa.

Effect of Binder on the Sintering Characteristics of PZT Ceramics (Binder가 PZT계 세라믹스의 소결특성에 미치는 영향)

  • 정우환;김정주;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.385-389
    • /
    • 1988
  • Effects of binder addition on the porosity, pore size and grain size of PZT ceramics were investigated. The binders were used PVA, PEG and MC, they were added separately and simultaneously. After sintering for 90 min 125$0^{\circ}C$, the porosity and the pore size were determined by using an image processing method. Simultaneous addition of two different binders resulted in the highest sintered density and the large pore size.

  • PDF

Preparation of Porous SiC Ceramics Using Polycarbosilane Derivatives as Binding Agents (폴리카보실란계 바인더를 이용한 다공성 SiC 세라믹스의 제조)

  • Park, Jihye;Kim, Younghee;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.412-416
    • /
    • 2012
  • Porous SiC ceramics were prepared by using recycled SiC sludge, which is an industrial waste generated from solar cell industry. Polycarbosilane derivatives, such as polycarbosilane (PCS), polyphenylcarbosilane (PPCS) and hydridopolycarbosilane (HPCS) were used as binding agents for the fabrication of porous SiC ceramics at $1800^{\circ}C$ under Ar atmosphere. The effects of the various binding agents having different C/Si ratios were discussed on the sintering and porosity of the SiC ceramics. The prepared porous SiC ceramics were characterized by X-ray Diffraction (XRD) and Field-Emission Scanning Electron Microscope (FE-SEM). Thermal conductivity and porosity of SiC ceramics were measured at room temperature, and they were 56.7W/mK and 29.8%, respectively.

Preparation and properties of porous (Ca,Mg)0.15Zr0.7O1.7 ceramics (다공성 (Ca,Mg)0.15Zr0.7O1.7 세라믹스의 제조 및 특성)

  • Kim, Bok-Hee;Kim, Sang-Hee;Choi, Eun-Sil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.70-74
    • /
    • 2011
  • [ $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ]ceramics was investigated for the application to SOFC ceramic supporter with high porosity and mechanical strength. $ZrO_2$ powder was prepared by combustion method with glycine using the solution of $ZrO(NO_3)_2{\cdot}2H_2O$ dissolved into deionized water and calcination at $800^{\circ}C$ Porous $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics was prepared by sintering the mixture of prepared $ZrO_2$ powder, dolomite and carbon black at $1200{\sim}1400^{\circ}C$ for 1 h. The open porosity ofthe $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics sintered at $1300^{\circ}C$ was over 30 % and increased linearly with the amount of carbon black. The crystal structure of $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics consisted of single cubic phase. The open pore of this ceramics was connected continuously and distributed well on the whole. This ceramics sintered at $1300^{\circ}C$ showed the porosity from 32 to 55 % and mechanical strength from 90 MPa to 30 MPa with increasing the content of added carbon black.

Microstructure and PTCR Characteristics of Porous BaTiO3-based Ceramics Prepared by Adding Carbon Black (카본블랙을 첨가하여 제조한 다공성 BaTiO3계 세라믹스의 미세구조 및 PTCR 특성 변화)

  • Lee, Ki-Ju;Tang, Dongxu;Cho, Won-Seung
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2011
  • As a pore precursor, carbon black with different content of 0 to 60 vol% were added to (Ba,Sr)$TiO_3$ powder. Porous (Ba,Sr)$TiO_3$ ceramics were prepared by pressureless sintering at $1350^{\circ}C$ for 1h under air. Effects of carbon black content on the microstructure and PTCR characteristics of porous (Ba,Sr)$TiO_3$ ceramics were investigated. The porosity of porous (Ba,Sr)$TiO_3$ ceramics increased from 6.97% to 18.22% and the grain size slightly decreased from $7.51\;{\mu}m$ to $5.96\;{\mu}m$ with increasing carbon black contents. PTCR jump of the (Ba,Sr)$TiO_3$ ceramics prepared by adding carbon black was more than $10^5$, and slightly increased with increasing carbon black. The PTCR jump in the (Ba,Sr)$TiO_3$ ceramics prepared by adding 40 vol% carbon black showed an excellent value of $9.68{\times}10^5$, which was above two times higher than that in (Ba,Sr)$TiO_3$ ceramics. These results correspond with Heywang model for the explanation of PTCR effect in (Ba,Sr)$TiO_3$ ceramics. It was considered that carbon black is an effective additive for preparing porous $BaTiO_3$ based ceramics. It is believed that newly prepared (Ba,Sr)$TiO_3$ cermics can be used for PTC thermistor.

Effects of Compaction Pressure on the Properties of the Microstructure and Oxygen Gas Sensing of $Co_{1-x}Mg_xO$ Ceramics (성형압력이 $Co_{1-x}Mg_xO$ 세라믹스의 미세구조와 산소가스감지특성에 미치는 영향)

  • 전춘배;이덕동;조상희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1691-1698
    • /
    • 1989
  • Gas sensing effects produced by adsorptive reaction between specimen surface and gases are expected to be influenced greatly by the state of the speimen surface. In this study, Co1-xMgxO ceramics oxygen sensors were prepared by pressing at 0.3-1.5ton/cm\ulcornerwith or without binder, intending to change porosity and average grain size on the surface purposely. The composition ratio of CoO to MgO was fixed at 1:1(mol.%). Microstructure of prepared Co0.5Mg0.5O ceramics were observed, the electrical properties and the sensitivity characteristics for oxygen gas were investigated in the device temperature range of 700-1000\ulcorner and for oxygen partical pressure range of 1-10**-4 atm. Temperature dependence of the resistivity of the specimen showed NTC behavior, average grain size increased and porosity decreased with increasing compaction pressure. The slope of the resistivity of the specimen on the oxygen partial pressure decreased with increasing average grain size and with decreasing porosity. Particularly, specimen pressed by 0.3 and 0.5 ton/cm\ulcornershowed the highest sensitivity to oxygen gas.

  • PDF