• Title/Summary/Keyword: Pores

Search Result 2,118, Processing Time 0.027 seconds

Preparation of Crack-free HTS YBCO Films by EPD Method

  • Soh, Dea-Wha;Li Yingmei;Nataly Korobova
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.6-9
    • /
    • 2003
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode is studied. Polyethyleneglycol was coordinated to a structure formed by the EPD process with YBCO particles. The d.c electric fields of 200-300 V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the caxis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of submicrometer-sized pores and randomly orientated grains were prepared from the solution without PEG.

Fabrication of Porous Structure of BCP Sintered Bodies Using Microwave Assisted Synthesized HAp Nano Powder

  • Youn, Min-Ho;Paul, Rajat Kanti;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.475-476
    • /
    • 2006
  • Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having $150-180\;{\mu}m$ were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of $Ca^{2+}$ ion was observed in the sample sintered at $1000^{\circ}C$.

  • PDF

A Study on the Micropores of BTCA Finished Cotton Fabrics (BTCA로 방추가공된 면직물의 미세기공구조 측정)

  • 최연주;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.7
    • /
    • pp.1078-1084
    • /
    • 2002
  • Cotton fabrics were treated with 1,2,3,4-butanetetracarboxylic acid(BTCA) to impart durable press performance, which is formaldehyde-free DP finishing reagent. The pore structures of BTCA treated cottons were compared using a reverse gel permeation chromatographic technique(reverse GPC). A series consisting 4 kinds of water soluble sugars was used to study the elution characteristics of columns prepared from cotton fibers. From these data, differences in pore size distribution in the control and BTCA treated cottons were distinguished. BTCA crosslinks cellulose molecules provided wrinkle resistance to the treated cotton fabrics through ester linkages. Although crosslinking of cotton with BTCA reduced accessible internal volume across the entire range of pore size, differences in line pores were larger than in small pores. BTCA treated cotton exhibited reductions over 40% in large pore sizes.

Comparision of Biochar Properties From Biomass produced by Slow Pyrolysis (저속열분해를 통한 바이오매스 부산물의 바이오촤 특성 비교 분석)

  • Park, Jinje;Lee, Yongwoon;Ryu, Changkook;Gang, Ki Seop;Yang, Won;Jung, Jin-Ho;Hyun, Seunghun
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.69-72
    • /
    • 2013
  • This study investigates the characteristics of biochar by slow pyrolysis at $500^{\circ}C$ for various biomass residues. Six biomass materials were tested: Tree bark, Tree stem, bagasse, cocopeat, paddy straw and palm kernel shell. In the biochar yield, the effect of ash in the raw biomass was significant for paddy straw. Excluding the ash content, the timber bark, bagasse and paddy straw had a similar biochar yield of 26-29 wt.%. Tree stem and bagasse had well developed pores in a wide size range and large surface area over $200m^2/g$. Cocopeat and PKS has significantly higher biochar yield due to the increased content of lignin, but the development of intra-particle pores and microscopic surface area was very poor. The elemental composition, pH and other properties of the biochar samples were also compared.

  • PDF

Preparation of Biodegradable Porous Calcium Phosphate Ceramics for Bone Fillers (뼈 충진재용 생분해성 다공질 Calcium Phosphate 세라믹스의 제조)

  • Lee, Joong-Hwan;Kim, Suk-Young
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.130-132
    • /
    • 1996
  • It is well known when porous calcium phosphate ceramics are used as a bone graft substitute, new tissues or blood vessels are grown into the porous implant due to their excellent biocompatibility. In this study, the ${\beta}$-crystalline form of calcium metaphosphate, $Ca(PO_{3})_{2}$ is prepared by the controlled thermolysis of monocalcium phosphate, $Ca(H_{2}PO_{4})_{2}$. The diameter of cylindrical pores formed during cooling was controlled by a holding time at the melting point of a monocalcium phosphate and by the change of a recrystallization temperature, to obtained the most appropriate size (about $200{\mu}m$) of pores. It was observed that the increasing holding time at the melting point of monocalcium phosphate results in the decreases of pore sizes.

  • PDF

Deposition and Characterization of Electrophoretic Paint on AZ31 Magnesium Alloy

  • Nguyen, Van Phuong;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.141-146
    • /
    • 2016
  • In this study, electrophoretic paint (E-paint) was deposited on the knife-abraded surface of AZ31 magnesium alloy (AZ31), and its adhesion and corrosion resistance were examined by tape peel-test and salt spray test, respectively. E-paint started to deposit on AZ31 Mg alloy after an inductance time and pores were found in the E-paint layer which is ascribed to hydrogen bubbles generated on the surface during the painting process. The pores disappeared after curing for 15 min at $160^{\circ}C$. The E-paint on AZ31 exhibited good adhesion after immersion in deionized water for 500 h at $40^{\circ}C$. The E-paint sample without scratch showed no corrosion after 1500 h of salt spray test. However, on the scratched sample, blisters were visible adjacent to the scratched sites after 500 h of salt spray test.

Electrochemical Characteristics of Arc Thermal Sprayed Inconel 625 Coating on SS400 Steel in Seawater (Inconel 625로 아크 용사코팅된 SS400강의 해수 내 전기화학적 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.172-177
    • /
    • 2016
  • In this paper, various electrochemical experiments were conducted in seawater solution to evaluate corrosion damage behavior of arc thermal sprayed Inconel 625 coating on SS400 steel in marine environment. As a result, corrosion damages of thermal sprayed Inconel 625 coating preferentially occurred at the defect area, and they were observed as a form of pitting corrosion in the galvanostatic experiments. In Tafel analysis, corrosion current density of Inconel 625 coating was relatively high due to influence of interconnected pores and Cr oxides in the thermal spray coating layer. On the other hand, the result of the potential measurement, thermal sprayed Inconel 625 coating should need the post-treatment which can compensate the defects like pores and cracks because Inconel 625 coating presented a higher potential of about 290 mV than that of the SS400 steel.

Preparation of Non-cracking YBCO Films Using Eelectrophoretic Deposition

  • Soh, Deawha;Korobova, Natalya
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.117-122
    • /
    • 2004
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode was studied. Poly(ethylene glycol) was coordinated to a structure formed by the EPD process with YBCO particles. The suspension is characterized in terms of zeta potential and conductivity. The d.c electric fields of 200-300V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the c-axis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of sub-micrometer sized pores and randomly orientated grains were prepared from the solution without PEG

  • PDF

Fabrication of nanomaterials using an Anodic Aluminum Oxide(AAO) thin film and their properties (AAO template를 이용한 나노 구조의 제조와 특성)

  • Yu, Hyun-Min;Lee, Jae-Hyung;Lee, Jong-In;Jung, Hak-Ki;Jung, Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.814-817
    • /
    • 2010
  • AAO thin films prepared by a two-step anodization process have pores that are uniform in diameter, highly ordered, and perfectly vertical with respect to the plane of the nano template. Further, the pore size and interpore distance can be easily controlled by varying the anodizing voltage and acid electrolyte. When metals are electrochemically deposited in the pores, metal nanowires that are highly ordered and uniform in diameter are formed in each pore.

  • PDF

Synthesis and Electrical Properties of Polypyrrole Nanotubules (Polypyrrole Nanotubules의 합성과 전기적 특성)

  • 조영재;김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.544-547
    • /
    • 2000
  • Polypyrrole (PPy) was chemically synthesized within the pores of nanoporous polycarbonate (PC) Particle Track-etched Membranes (nano-PTM). Hollow tubules are formed because polypyrrole initially deposits on the surface of the pores walls. By running successive syntheses, we have obtained wires (filled tubules). The redox property of PPy nanotubules was investigated by cyclic voltammetry. The redox potential was lowered as much as 0.5V vs. Ag/AgC1, comparing with electrosynthesized PPy film. It suggests that an electron hopping mechanism of PPy nanotubules was improved. Electric conductivity of PPy nanotubules and nanowire was evaluated. We obtained good electric conductivity of PPy nanotubules even in the neutral state. The conductivity and activation energy were $10^1$ order at the room temperature and 25.3 meV respectively.

  • PDF