• Title/Summary/Keyword: Pore-filled

Search Result 134, Processing Time 0.024 seconds

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

Movement of Applied Nutrients Through Soils By Irrigation 1. Movement of nutrients to the amount of water applied (관개수(灌漑水)에 의한 시비양분(施肥養分)의 토양중(土壤中) 이동(移動)에 관(關)한 연구(硏究) 1. 관수량(灌水量)에 따른 양분(養分) 이동(移動))

  • Ryu, Kwan-Shig;Yoo, Sun-Ho;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.102-108
    • /
    • 1991
  • A field experiment with microplots(D.20cm, L. 85cm) was conducted to obtain quantitative information on the downward movement of nutrients applied to the soils by different amount of irrigation water. The microplots were installed by embedding PVC column(D. 20cm, L. 90cm) filled with sieved soils in the field. Urea, fused and superphosphate, and KCl were broadcasted over the soil in the microplots and surface layer was covered with lime-amended soils. Microplots were removed 1 week after water application and analysed for Cl, $NH_4$ and $NO_3-N$, Bray 1-P and exchangeable cations of Ca, Mg, and K in each segment. Effect of irrigation rate on the movement of these ions were evaluated with the mean downward movement(MDM) determined with nutrient concentration of each segment and the distance to the segment from the site fertilized. For the nutrient studied, MDM was linearly related to the amount of water applied. When one pore volume of water needed for 0.1 bar soil moisture tension was applied, MDM(cm), computed as the piston front of applied water advanced 10cm, was found to be in the order; Cl, 7.52>Inorganic N, 6.03> K, 3.50> Mg, 2.69>Ca, 1.19>P, 0.29. After the downward movement of applied nutrients soil pH seemed to decrease with irrigation in the surface layer(0-15cm) and increase in the subsurface layer. It was also found that ammonium-nitrogen evolved from urea hydrolysis was more effective in raising the subsoil pH rather than the exchangeable Ca and Mg.

  • PDF

DEVELOPMENT OF MICROPOROUS CALCIUM PHOSPHATE COATED NERVE CONDUIT FOR PERIPHERAL NERVE REPAIR (말초신경 재건을 위한 인회석 박막 코팅 미세공성 신경재생관(nerve conduit)의 개발)

  • Lee, Jong-Ho;Hwang, Soon-Jeong;Choi, Won-Jae;Kim, Soung-Min;Kim, Nam-Yeol;Lee, Eun-Jin;Ahn, Kang-Min;Myung, Hoon;Seo, Byoung-Moo;Choi, Jin-Young;Choung, Pill-Hoon;Kim, Myung-Jin;Kim, Hyun-Man
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • This study was performed to develop a useful nerve conduit which provides favorable environment for Schwann cell viability and proliferation. Milipore membrane of $0.45{\mu}m$ pore size was selected because it permits nutritional inflow from the outside of the conduit and prevents from invading the fibrotic tissue into the conduit. The membrane was rolled and sealed to form a conduit of 2mm diameter and 20mm length. To improve the axonal regeneration and to render better environment for endogenous and exogenous Schwann cell behaviour, the microgeometry and surface of conduit was modified by coating with thin film of calcium phosphate. Cellular viability within the conduit and attachment to its wall were assessed with MTT assay and SEM study. Milipore filter conduit showed significantly higher rate of Schwann cell attachment and viability than the culture dish. However, the reverse was true in case of fibroblast. Coating with thin film of low crystalline calcium phosphate made more favorable environment for both cells with minimal change of pore size. These findings means the porous calcium phosphate coated milipore nerve conduit can provide much favorable environment for endogenous Schwann cell proliferation and exogenous ones, which are filled within the conduit for the more advanced strategy of peripheral nerve regeneration, with potential of reducing fibrotic tissue production.

NO Reduction Performance of V2O5-WO3/TiO2 Catalyst Supported on a Ceramic Sheet Filter (세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능)

  • Choi, Joo Hong
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Catalytic filter has many advantages for the industrial application owing to its bi-functional ability to treat nitrogen oxides and particulate simultaneously. The technical feasibility of using the catalytic filter in the flue gas treatment process will be more promoted if the high porous ceramic sheet filter is utilized. However, it is not easy to prepare the effective catalytic filter using sheet filter as it has less room for catalyst support due to its thin layer. In this study, catalytic filter using a domestic ceramic sheet filter element has been prepared and conducted the experimental evaluation for NO reduction performance. The current sheet filter element shows the low catalytic activity less than 92% conversion for NO concentration 700 ppm at the face velocity $0.02m\;s^{-1}$. This unexpected low catalytic activity seems to be caused by the present of extraordinary large pores from the lack of uniformity in the pore size distribution of the sheet filter. The large pore size of the sheet filter is reduced by composing the smaller powder as its raw material, which presents improvement in NO conversion more than 96%. More improvement is observed showing 98% NO conversion which is applicable to a commercial plant when the catalyst coating layer is expanded by adding the large $TiO_2$ particles during the catalyst preparation. Both of above two methods is regarded as that the broad gates of the larger pores in the coating layer are effectively filled with the proper catalyst. So these results encourage the utilization of sheet filter as a good catalytic filter material with its potential merit of high permeability.

AN EXPERIMENTAL STUDY ON THE CYTOTOXICITY OF CAVITY LINERS (이장재의 세포독성에 관한 실험적 연구)

  • Kim, Jeong-Hye;Kim, Yung-Hai
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.77-92
    • /
    • 1990
  • The purpose of this study was to evaluate the cytotoxic effects of 6 cavity liners in vitro. Human fibroblasts were cultured in ${\alpha}$-MEM and each liner was manually mixed and filled in glass ring cylinder ($8{\times}8mm$ in diameter, in height). The cylinders filled with the liners were placed in the center of the dish (35mm in diameter) containing 3ml of ${\alpha}$-MEM. Millipore filters (pore size $0.22{\mu}m$) to simulate dentin barrier were also placed between the bottom of cylinder and the dish. Then the culture dishes were stored in 5% $CO_2$ containing incubator for 5 and 10 days at the temperature of $36.6^{\circ}C$. The results of the experiments were analyzed by counting the cells in the period of 5 and 10 days respectively, and were assessed by calculating the cell multiplication rate and the relative growth rate. The experiemntal groups and the control group were compared statistically. The results of the study were summarized as follows: 1. The cell number of Zinc oxide-eugenol was $(4.13{\pm}1.31){\times}10^4$ cells/ml at 5 days and $(4.32{\pm}1.61){\times}10^4$ cells/ml at 10 days. 2. The cell number of Cavitec was ($8.35{\pm}2.87{\times}10^4$ cells/ml and $(10.08{\pm}5.10){\times}10^4$ cells/ml at 5 and 10 days respectively. 3. The cell number of Dycal was $(13.56{\pm}3.89){\times}10^4$ cells/ml at 5 days and $(34.75{\pm}8.85){\times}10^4$ cells/ml at 10 days. 4. The cell number of life was $(11.46{\pm}3.32){\times}10^4$ cells/ml and $(21.92{\pm}6.18){\times}10^4$ cells/ml at 5 and 10 days. 5. The cell number of Base cement was $(13.73{\pm}3.73){\times}10^4$ cells/ml and $(36.68{\pm}5.20){\times}10^4$ cells/ml at 5 and 10 days. 6. The cell number of Dentin cement was $(13.58{\pm}3.90){\times}10$ cells/ml and $(66.95{\pm}24.09){\times}10$ cells/ml at 5 and 10 days. 7. The cell multiplication rate of zinc oxide-eugenol cements was significantly less than that of the calcium hydroxide and glass ionomer cement. (P < 0.05)

  • PDF

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile의 현장적용을 위한 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Sizing Efficiency of AKD in Causticizing Calcium Carbonate Filled Paper

  • Wang, Jian;Liu, Ling;Xu, Yong-Jian
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Causticizing calcium carbonate (CCC) is produced as a by-product in the causticization step of the kraft pulping process. It is often calcined in a rotary lime kiln after being dewatered and reused in the causticizing process. But for the China mill, the conventional recycled way is difficult because the CCC is mainly obtained from non-wood pulping materials, which higher silicon content led to serious silicon obstacle. So it is often discarded as solid waste or used in landfill after dewatering and secondary pollution is brought. In order to prevent its secondary pollution, recent years, the CCC is used as a filler in China papermaking industry. In mill trials, the CCC can be used to replace an amount of precipitated calcium carbonate (PCC). Unfortunately, the application scope and dosage of CCC have been limited due to its lower sizing efficiency than PCC. In this study, the reason for the lower sizing efficiency of alkyl ketene dimer (AKD) when CCC was used as a filler was investigated. The results showed that the materials in green liquid, such as insoluble matter in green liquid, silicon and metal ions, were a little influence on the sizing efficiency of AKD. The higher BET and BJH pore volume of the CCC were the main reason for lower sizing efficiency of AKD when it was used as filler.

Ultrastructural Study on the Maturation of Oocyte in the African Giant Snail, Achatina fulica (아프리카 왕달팽이 (Achatina fulica) 난모세포 성숙에 관한 미세구조)

  • Chang, Nam-Sub;Han, Jong-Min
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2000
  • The observation using an electron microscope shows that the maturation of the oocyte of African giant snail, Achatina fulica, proceeds over three stages. The oocyte of stage 1 is a small elliptic cell $(220\times400{\mu}m)$ whose light nucleoplasm contains two nucleoli. In its cytoplasm, a number of mitochondria, rough endoplasmic reticula, and ribosomes are found, while yolk granules are not. The nucleus of the oocyte of stage 2 is relatively large in comparison with the volume of cytoplasm, and contains one nucleolus. In the nuclear envelope comprising inner and outer double membrane, there are found a lot of nuclear pores for materials to pass through. A number of mitochondria, Golgi complex and lipid yolk granules appears in the cytoplasm, and proteinous yolk granules begin to form and mature in the vacuoles of various sizes ($0.8\sim3.0{\mu}m$ in diameter). The oocyte of stage 3 has an enlarged nucleolus. Material transportation through nuclear pore is not found any longer. The cytoplasm in this stage is filled with proteinous and lipid yolk granules. The microvilli are developed around the egg plasma membrane.

  • PDF

Recent Developments in Ion-Exchange Nanocomposite Membranes for Energy Applications (에너지용 이온 교환 복합막 최근 연구 개발 동향)

  • Hwang, Doo Sung;Chung, Tiffany;Wang, Tongshuai;Kim, Sangil
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.432-448
    • /
    • 2016
  • In the last decade, various types of energy harvesting and conversion systems based on ion exchange membranes (IEMs) have been developed for eco-friendly power generation and energy-grid systems. In these membrane-based energy systems, high ion selectivity and conductivity properties of IEMs are critical parameters to improve efficiency of the systems such as proton exchange membrane fuel cells, anion exchange membrane fuel cells, redox flow batteries, water electrodialysis for hydrogen production, and reverse electrodialysis. This article suggests variable approaches to overcome trade-off limitation of polymeric membrane ion transport properties by reviewing various types of composite ion-exchange membranes including novel inorganic-organic nanocomposite membrane, surface modified membranes, cross-linked and pore-filled membranes.

Evaluation of Surface Water-preventing Materials on Stabilization of Contaminants in Tailings (광물찌꺼기에 함유된 오염물질의 안정화를 위한 표면 차폐재의 성능 평가)

  • Kim, Young-Kyu;Jung, Myung-Chae;Kim, Jung-Yul;Kim, Yoo-Sung;Lee, Jin-Soo;Park, Kwan-In
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.53-61
    • /
    • 2011
  • This study examined evaluation on stabilization of major and trace elements in tailings by various surface water-preventing materials. Six columns were filled with tailings of the Sinlim mine, then covered with tailings only, compacted soils, clay, soil-bentonite mixture, pozzolan and bentonite mat. After injection of artificial rain water, the leachate was sampled with times (3, 6, 9 and 12 pore volume) and analysed for major (Ca, Na, Mg, K) and trace elements (As, Cd, Cu, Pb, Zn) by ICP-AES. With exception to pozzolan type, the pH values of leachate from the other types became stabilized from 5.5 to 7.5, and EC (electric conductivity) of leachate from them decreased with times. For the pozzolan type, however, the pH and EC of leachate increased with time due to its alkalinity producing system. Concentrations of most major and trace elements in leachate decreased and stabilized with time. Consequently, soil-bentonite mixed cover shows the best ability of water-preventing and reducing mobility of elements in tailings site.