• Title/Summary/Keyword: Pore volumes

Search Result 92, Processing Time 0.016 seconds

The Cesium Removal Using a Polysulfone Carrier Containing Nitric Acid-treated Bamboo Charcoal (질산으로 표면처리한 대나무 활성탄을 첨가한 폴리술폰 담체의 세슘제거 효율 규명)

  • Rahayu, Ni Wayan Sukma Taraning;Kim, Seonhee;Tak, Hyunji;Kim, Kyeongtae;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • The cesium (Cs) sorption characteristics of a bead-type polysulfone carrier contained HNO3-treated bamboo charcoal (3 - 5 mm in diameter) in water system were investigated and its Cs removal efficiency as an adsorbent from water was also identified by various laboratory experiments. From the results of batch sorption experiments, the bead-type polysulfone carrier with only 5% HNO3-treated bamboo charcoal (P-5NBC) represented the high Cs removal efficiency of 57.8% for 1 hour sorption time. The Cs removal efficiency of P-5NBC in water after 24 hours reaction maintained > 69% at a wide range of pH and temperature conditions, attesting to its applicability under various water systems. Batch sorption experiments were repeated for P-5NBC coated with two cultivated microorganisms (Pseudomonas fluorescens and Bacillus drentensis), which were typical indigenous species inhabited in soil and groundwater. The Cs removal efficiency for two microorganisms coated polysulfone carrier (BP-5NBC) additionally increased by 19% and 18%, respectively, compared to that of only P-5NBC without microorganisms coated. The average Cs desorption rate of P-5NBC for 24 h was lower than 16%, showing the Cs was stably attached on HNO3-treated bamboo charcoal in so much as its long-term use. The maximum Cs sorption capacity (qm) of P-5NBC calculated from the Langmuir isotherm model study was 60.9 mg/g, which was much higher than those of other adsorbents from previous studies for 1 h sorption time. The results of continuous column experiments showed that the P-5NBC coated with microorganisms packed in the column maintained > 80% of the Cs removal efficiency during 100 pore volumes flushing. It suggested that only 14.7 g of P-5NBC (only 0.75 g of HNO3 treated bamboo charcoal included) can successfully clean-up 7.2 L of Cs contaminated water (the initial Cs concentration: 1 mg/L; the effluent concentration: < 0.2 mg/L). The present results suggested that the Cs contaminated water can be successfully cleaned up by using a small amount of the polysulfone carrier with HNO3-treated bamboo charcoal.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.