• Title/Summary/Keyword: Pore geometry

Search Result 53, Processing Time 0.028 seconds

Interpretation of Electrical Resistivity Tomogram with Contents of Clay Minerals for the Land Creeping Area (점토광물 함유량을 고려한 땅밀림 산사태 지역의 전기비저항 자료의 해석)

  • Kim, Jeong-In;Kim, Ji-Soo;Lee, Sun-Joong;Cho, Kyoung-Seo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • Clay mineral content of weathered zone is a key parameter for landslide studies. Electrical resistivity tomography is usually performed to delineate the geometry of complex landslides and to identify the sliding surface. In clay-bearing weathered zone, parallel resistivity Archie equation is employed to investigate the effect of conductivity added (resistivity reduced) by clay minerals of kaolinite and montmorillonite, which is dependent on their specific surface area and cation exchange capacities (CEC). A decrease of overall resistivity and apparent formation factor is observed with increasing pore-water resistivity, significantly in montmorillonite. Formation factor is found decreased with increasing porosity and decreasing cementation factor. Parallel Archie equation was applied to the electrical resistivity data from the test area (Sinjindo-ri, Taean-gun, Chungcheongnam-do, Korea) which experienced land creeping in the year of 2014. A panel test with varying clay-mineral contents provides the best fit section when the theoretical section constructed with the assumed contents approaches the field section, from which the clay-mineral content of the weathered zone is estimated to be approximately 10%. Resistivity interpretation schemes including the clay mineral contents for land creeping studies explored in this paper can be challenged more when porosity, saturation, and pore-water resistivity are provided and they are included in the numerical resistivity modeling.

Study of the Weld Defects Identification Method by Ultrasonic Pulse Echo Patterns (초음파 펄스 에코 패턴으로 용접 결함 식별 방법 연구)

  • Kim, Won-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6114-6118
    • /
    • 2013
  • This study examined the ultrasonic pulse reflection method(UPRM) for testing each ultrasonic pulse waveform model(UPWM) based on weld defects. The sharp crack of a clear signal was generated. The echo height of the defective probes changed according to the location. In a long crack in a circle around the defective probes, the Swivel scanning echo height when using the particle was reduced drastically. The peaks in the echo were thin because the needle was pointed. The porosity defects arising from a single echo was sharp and crisp, but a number of pores of the collective reflection overlapped and ajagged echo was observed. Slag, slag inclusions, cracks, and defects at the Swivel scan of each particle using the echo shape showed difference in the degree. Cracks were revealed as sudden changes in the echo height of the slag inclusions: increase ${\rightarrow}$ decrease ${\rightarrow}$ increase ${\rightarrow}$ decrease. In addition, the location of a number of defects in the dense pore geometry, such as a typical echo sundry, revealed the shape in the slag. Poor penetration of the defect echo, revealed the cracks to have a sharp-edged, crack-like shape with an echo.

Preliminary Study on the Co-relation between the Water Infiltration and the Shallow Slope Failure (지표수 침투와 천부 사면파괴와의 관계에 관한 기초연구)

  • 송원경
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.33-44
    • /
    • 1998
  • Preliminary study has been conducted to analyse the co-relation between shallow landslides frequently occurring in rainy seasons and the water infiltration into the slope. The change of stress state due to partial saturation of a soil and hence the reduction of its shear strength have been reviewed. The variation of the safety factor of an infinite planar slope in accordance with various water infiltration scenarios has been estimated by limit equilibrium method to explain the mechanism of shallow slope failure. Numerical analysis under the same condition as those of some models dealt with in the previous method has been carried out by using FLAC, a finite difference program, and the results have been compared with the ones obtained by limit equilibrium method. Both results proved to be identical, which implies the ability of the numerical approach to the problems related to the stability analysis of unsaturated slope with the irregular geometry. Further improvement, however, should be made to apply the present analysis procedure to general slopes since it deals with a simple one.

  • PDF

Determination of Consolidation Characteristics of Clayey Soils from the Self-boring Pressuremeter Test (자가굴착식 프레셔미터 시험을 이용한 점성토의 압밀특성 산정)

  • 장인성;정충기;김명모;조성민
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.87-96
    • /
    • 2002
  • The strain holding test(SHT) or the sell-boring pressuremeter test(SBPT) has been effectively utilized to determine the horizontal coefficient of consolidation$(c_h)$ of clayey soils. However, a commonly used procedure proposed by Clarke et al.(1979) can lead to an erroneous estimation of $(c_h)$ because of its simplified assumptions. This paper deals with numerical analyses based on realistic test conditions of the generally accepted testing procedure, and .using the most commonly used type of pressuremeter. The effects of pressuremeter geometry, partial drainage during cavity expansion, and the cavity strain level for the holding test are investigated with the radial distributions of the initial excess pore pressure and their dissipation rate. Based on the results of the numerical analyses, the curve of the time factor for the 50% degree of consolidation($T_{50}$) needed to estimate $(c_h)$ is proposed. Comparisons are made between $(c_h)$ values estimated from the SHT or the SBPT and those obtained from other in situ and laboratory tests performed at two sites in Korea. These results suggest the improved capability of the $T_{50}$ curve proposed herein.

Thermal Phenomena of an N2O Catalyst Bed for Hybrid Rockets Using a Porous Medium Approach (다공성 매질 접근법을 적용한 하이브리드 로켓 N2O 촉매 점화기의 열적 현상)

  • 유우준;김수종;김진곤;장석필
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fluid flow and thermal characteristics in a catalyst bed for nitrous oxide catalytic decomposition which is introduced as a hybrid rocket ignition system for small satellites were theoretically considered. To analyze the thermal phenomena of the catalyst bed, a so-called porous medium approach has been opted for modeling the honeycomb geometry of the catalyst bed. Using a Brinkman-extended Darcy model for fluid flow and the one-equation model for heat transfer, the analytical solutions for both velocity and temperature distributions in the catalyst bed are obtained and compared with experimental data to validate the porous medium approach. Based on the analytical solutions, parameters of engineering importance are identified to be the porosity of the catalyst bed, effective volumetric ratio, the ratio of the radius of the catalyst bed to the radius of a pore, heat flux generated by a heater, and pumping power. Their effects on thermal phenomena of the catalyst bed are studied.

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

Effect on Nonionic Surfactant Solutions on Wetting and Absorbancy of Cotton Fabrics (비이온계 계면활성제 수용액이 면직물의 습윤특성에 미치는 영향)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.8
    • /
    • pp.1444-1452
    • /
    • 2001
  • Textile materials are frequently in contact with surfactant solutions during their manufacturing or finishing processes as well as cleaning processes in use. Liquid wetting, wicking and absorbency of textile materials, and the liquid properties, surface characteristics and pore geometry of textile materials, and the liquie-solid interactions, In this paper, 10 different nonionic surfactants, including Span 20, Twen 20, 40, 60, 80, 21, 61, 81, 65, 85, were used. The surfactants were characterized by their hydrophile-lipophile-balance (HLB) values, structures, and surface tensions. The 0.1g/dL and 1.0g/dL surfactant solutions, which were both above critical micelle concentration (CMC), were used to see the concentration effects on the wetting and absorbency of cotton fabrics. The wetting behavior and liquid retention properties of hydrophobic cotton fabrics with different nonionic surfactant solutions are reported. The contact angles are greatly decreased and the water retention values are greatly increased by adding most of the surfactants studied into the system. The extents of this effects are influenced by the characteristics of surfactants and its solutions. Hydrophilic surfactants which have low number of carbon atoms or unsaturated hydrophobe structures are more effective in improving the wetting and absorbancy of hydrophobic cotton fabrics. The water retention of hydrophobic cotton fabrics has positive relations with $cos{\theta}$, adhesion tension and work of adhesion. The 1.0g/dL surfactant solutions show similar, but slightly improved wetting and absorbency characteristics of hydrophobic cotton fabrics compared to the 0.1g/dL surfactant solutions.

  • PDF

Analysis of the Factors Influencing the Mesopore Ratio on the Soil Surface to Investigate the Site Factors in a Forest Stand (III) - With a Special Reference to Mixed Stands - (산림(山林)의 입지환경인자(立地環境因子)가 표층토양(表層土壤)의 조공극률(組孔隙率)에 미치는 영향인자(影響因子) 분석(分析) (III) - 혼효임(混淆林)을 중심(中心)으로 -)

  • Park, Jae Hyeon;Jeong, Yongho;Kim, Kyong Ha;Youn, Ho Joong
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.683-691
    • /
    • 2001
  • This study aimed to clarify the influencing factors of the mesopore ratio on a pore geometry of surface soil in mixed stands as an index of the water retention capacity. Twenty four factors including site conditions and soil properties were analyzed by spss/pc+ for the data collected from during March to October of 1995. The factors influencing the mesopore ratio(pF2.7) on the surface soil were as follows; mesopore ratio(pF2.7) on the B horizon soil, under vegetation coverage, organic matter contents of surface soil and F layer depth. And influencing factor on the ratio of mesopore in the soil surface was correlated with surface soil hardness and depth of 10cm soil hardness shows high negative significance. Also, multiple regression equations for mesopore ratio of the mesopore ratio of B horizon soil and organic matter contents shows high significance($R^2$; 0.84).

  • PDF

Analysis of the Factors Influencing the Mesopore Ratio on the Soil Surface to Investigate the Site Factors in a Forest Stand(II) - With a Special Reference to Deciduous Stands - (산림(山林)의 입지환경인자(立地環境因子)가 표층토양(表層土壤)의 조공극율(粗孔隙率)에 미치는 영향인자(影響因子) 분석(分析)(II) - 활엽수림(闊葉樹林)을 중심(中心)으로 -)

  • Jeong, Yongho;Park, Jae Hyeon;Kim, Kyong Ha;Youn, Ho Joong
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.450-457
    • /
    • 2001
  • This study aimed to clarify the influencing site factors of the mesopore ratio on a pore geometry of surface soil in deciduous stands as an index of the water retention capacity. Fifteen factors including site conditions and soil properties were analyzed by spss/pc+ for the data collected during March to October of 1994. The factors influencing the mesopore ratio(pF2.7) on the surface soil were as follows; tree height, under vegetation coverage and organic matter contents of soil. And influencing factor on the ratio of mesopore in the soil surface was correlated with surface soil hardness shows high negative significance. Also, multiple regression equations for mesopore ratios of surface soil hardness, organic matter contents of soils show high significance($R^2=0.84$). In deciduous stands, it is effective in promoting development on the ratio of mesopore that forest practice for enhancing of the water resource retention capacity should be carried out when the under vegetation coverage rates of stands are maintained from 30 to 80 percentages.

  • PDF

Study of Pool Boiling Heat Transfer on Various Surfaces with Variation of Flow Velocity (다양한 표면에서 유동 속도에 따른 풀 비등 열전달에 관한 연구)

  • Kang, Dong-Gyu;Lee, Yohan;Seo, Hoon;Jung, Dongsoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • In this study, a smooth flat surface, low fin, Turbo-B, and Thermoexcel-E surfaces are used to examine the effect of the flow velocity on the pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs). HTCs and CHFs are measured on a smooth square heater of $9.53{\times}9.53mm^2$ at $60^{\circ}C$ in a pool of pure water at various fluid velocities of 0, 0.1, 0.15, and 0.2 m/s. Test results show that for all surfaces, CHFs obtained with flow are higher than those obtained without flow. CHFs of the low fin surface are higher than those of the Turbo-B and Thermoexcel-E surfaces due largely to the increase in surface area and sufficient fin spaces for the easy removal of bubbles. CHFs of the low fin surface show even 5 times higher CHFs as compared to the plain surface. On the other hand, both Turbo-B and Thermoexcel-E surfaces do not show satisfactory results because their pore sizes are too small and water bubbles easily cover them. At low heat fluxes of less than $50kW/m^2$, HTCs increase as the flow velocity increases for all surfaces. In conclusion, a low fin geometry is good for application to steam generators in nuclear power plants.