• 제목/요약/키워드: Pore clogging

검색결과 43건 처리시간 0.022초

응집과 여과를 이용한 조류의 초고속 제어에 관한 연구 (High-rate Removal of Algae by Using of Filtration System with Coagulant Addition)

  • 윤상린;김동하;이영규
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.221-228
    • /
    • 2002
  • Abundant growth of algae in raw water sources caused by eutrophication brings about significant side effects on water supply, such as taste and order problem, oxygen depletion, toxic material secretion, and filter clogging problem in water treatment process, etc. The purpose of this research is to remove the algae and phosphorus compounds in the Pal-dang reservoir promptly by using the upflow filtration system with coagulant addition. The filter tower consisted of sand media and sieve filter with air back-washing process. By using coagulation and filtration with $132{\mu}m$ pore size filter, about 55% and 70% of algae and phosphorus compounds were removed respectively. The experimental conditions were as follows; head loss of 0.2m, linear velocity of 200m/day, and filtration flux of 1000($L/m^2/day$). In the case of filtration with cartridge type filter of $25{\mu}m$ pore size, the filtration flux was about 7800 LMH, and the removal ratios of COD, SS, T-P, and Chlo-a. were 61%, 99%, 54%, and 98%, respectively. However, high pressure air back-washing process with should be required for the maintenance of such high filtration flux.

Evaluation of Injection capabilities of a biopolymer-based grout material

  • Lee, Minhyeong;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.31-40
    • /
    • 2021
  • Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.

Behavior of double lining due to long-term hydraulic deterioration of drainage system

  • Shin, Jong-Ho;Lee, In-Keun;Joo, Eun-Jung
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1257-1271
    • /
    • 2014
  • The hydraulic deterioration of the drainage system in tunnel linings is one of the main factors governing long-term lining-ground interactions during the lifetime of tunnels. Thus, in the design procedure of a tunnel below the groundwater table, the possible detrimental effects associated with the hydraulic deterioration should be addressed. Hydraulic deterioration in double-lined tunnels can occur because of reasons such as clogging of the drainage layer and drain-pipe blockings. In this study, the coupled mechanical and hydraulic interactions between linings due to drain-pipe blockings are investigated using the finite-element method. A double-lined structural model incorporating hydraulic behavior is developed to represent the coupled structural and hydraulic behavior between the linings and drainage system. It is found that hydraulic deterioration hinders flow into the tunnel, causing asymmetric development of pore-water pressure and consequent detrimental effects to the secondary lining.

Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil

  • Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제7권6호
    • /
    • pp.633-647
    • /
    • 2014
  • Biopolymers, polymers produced by living organisms, are used in various fields (e.g., medical, food, cosmetic, medicine) due to their beneficial properties. Recently, biopolymers have been used for control of soil erosion, stabilization of aggregate, and to enhance drilling. However, the inter-particle behavior of such polymers on soil behavior are poorly understood. In this study, an artificial biopolymer (${\beta}$-1,3/1,6-glucan) was used as an engineered soil additive for Korean residual soil (i.e., hwangtoh). The geotechnical behavior of the Korean residual soil, after treatment with ${\beta}$-1,3/1,6-glucan, were measured through a series of laboratory approaches and then analyzed. As the biopolymer content in soil increased, so did its compactibility, Atterberg limits, plasticity index, swelling index, and shear modulus. However, the treatment had no effect on the compressional stiffness of the residual soil, and the polymer induced bio-clogging of the soil's pore spaces while resulting in a decrease in hydraulic conductivity.

Gravel Pile의 현장적용을 위한 시험시공 사례연구 (A Case Study on the Application of Gravel Pile in Soft Ground)

  • 천병식;고용일;여유현;김백영;최현석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 연약지반처리위원회 학술세미나
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

흙 필터재의 폐색으로 인한 투수성 저하 모델 개발 (Modelling of Permeability Reduction of Soil Filters due to Clogging)

  • 이인모;박영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.271-278
    • /
    • 1999
  • Soil filters are commonly used to protect the soil structures from eroding and piping. When filters are clogged by fine particles which are progressively accumulated, these may lead to buildup of excessive pore pressures also leading to instability in subsurface infrastructure. A filter in the backfill of a retaining wall, a filter adjacent to the lining of a tunnel, or a filter in the bottom of an earth dam can be clogged by transported fine particles. This causes reduction in the permeability, which in turn may lead to intolerable decreases in their drainage capacity. In this thesis, the extent of this reduction is addressed using results from both experimental and theoretical investigations. In the experimental phase, the permeability reduction of a filter is monitored when an influent of constant concentration flows into the filter (uncoupled test), and when the water flow through the soil-filter system to simulate an in-situ condition (coupled test), respectively. The results of coupled and uncoupled test are compared with among others. In the theoretical phase of the investigation, a representative elemental volume of the soil filter was modeled as an ensemble of capillary tubes and the permeability reduction due to physical clogging was simulated using basic principles of flow in cylindrical tubes. In general, it was found that the permeability was reduced by at least one order of magnitude, and that the results from the uncoupled test and theoretical investigations were in good agreement. It is observed that the amount of deposited particles of the coupled test matches fairly well with that of the uncoupled test, which indicates that the prediction of permeability reduction is possible by preforming the uncoupled test instead of the coupled test, and/or by utilizing the theoretical model.

  • PDF

배수공 내 스케일 생성 방지 기술의 현장 적용성 평가 (Field Applicability of Scale Prevention Technologies for Drainage Holes)

  • 주익찬;이종휘;김현기;김경민;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제13권9호
    • /
    • pp.45-51
    • /
    • 2012
  • 터널 내로 유입되는 지하수에 의해 시멘트 수화물인 수산화칼슘$(Ca(OH)_2)$이 토중의 미생물 반응, 유기물의 산화 등에 의해 발생되는 이산화탄소$(CO_2)$와 차량의 배기가스$(SO_3)$ 등과 반응하여 그 반응물이 터널 상부에 설치된 배수공 내에 침전됨으로 인하여 배수공 클로깅 현상이 발생하게 된다. 이러한 현상으로 인하여 터널 배수 시스템의 수리기능저하가 발생하게 되면 간극수압이 증가 하여 누수를 가속화 시키며, 라이닝의 열화를 초래하게 된다. 본 연구는 배수공 클로깅 현상을 방지하기 위하여 퀀텀스틱과 자화장치를 개발하였으며 서울 남산 ${\bigcirc}{\bigcirc}$ 터널과 지하철 ${\bigcirc}{\bigcirc}{\bigcirc}$ 공구에서의 현장실험을 통하여 위 기술의 현장 적용성을 규명하는데 그 목적이 있다. 배수공에 요소기술을 적용한 배수관을 삽입한 후 주기적으로 육안관측을 수행하였고 최종적으로 발생된 스케일의 SEM 및 XRD 분석을 수행하였다. 그 결과 요소기술을 적용하였을 경우 스케일 생성량이 현저히 줄었으며, 특히 퀀텀스틱이 자화장 치에 비하여 그 효과가 우수하였다. 따라서 기존의 노후터널 배수공에 퀀텀스틱 또는 자화장치를 배수공에 적용하였을 경우, 배수공 의 클로깅 현상을 어느 정도 저감시킬 수 있을 것으로 판단된다.

지하수 유동과 응력-간극수압 연계 해석을 통한 노후터널의 라이닝 안정성 분석 (A Study on the Lining Stability of Old Tunnel Using Groundwater Flow Modelling and Coupled Stress-Pore Water Pressure Analysis)

  • 김범주;정재훈;장연수;천병식
    • 한국지반공학회논문집
    • /
    • 제28권4호
    • /
    • pp.101-113
    • /
    • 2012
  • 터널 노후화로 인한 배수능력 저하는 터널 주변 간극수압의 상승을 유발하고 이로 인해 터널 배면 라이닝 응력이 증가하여 터널 안정성에 영향을 미치게 된다. 본 연구에서는 시공된 지 30여년이 지난 재래식 터널인 남산 3호 터널을 대상으로 수발공 폐색에 따른 배수조건 변화와 그에 따른 터널 주변 간극수압 및 라이닝 안정성의 관계를 수치해석을 통하여 분석하였다. 해석방법은 남산 지역에 대하여 지하수 유동 모델링을 수행하고 이로부터 설정된 수리경계조건을 적용하여 터널 침투류와 응력-간극수압 연계 3차원 유한요소해석을 수행하는 것으로 하였다. 이를 통하여 운영 중인 터널 현장에서 비교적 간단히 측정가능한 수발공 유출량 데이터를 이용하여 터널 주변 간극수압과 라이닝 응력을 산정할 수 있었으며, 본 연구에서 적용한 해석방법은 기존 자료가 부족하고 현장 조사에 제약이 많은 운영 중인 노후터널에 대하여 현재 터널의 배수상태를 고려하여 터널 안정성을 평가하는데 도움이 될 수 있을 것으로 판단된다.

An evaluation of a crushed stone filter and gabion retaining wall for reducing internal erosion of agricultural reservoirs

  • Lee, Young-Hak;Lee, Dal-Won;Ryu, Jung-Hyun;Kim, Cheol-Han;Heo, Joon;Shim, Jae-Woong
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.485-496
    • /
    • 2020
  • Recent changes in the disaster environment have greatly increased the possibility of internal erosion in deteriorated reservoirs; thus, countermeasure methods are required to enhance the drainage performance of embankments. Sand filters have been mainly used to prevent internal erosion; however, due to the sand depletion and environmental problems, new alternative materials are required to replace the sand in the filter zone. In this study, crushed stone was used instead of sand as a material that could satisfy permeability, material supply, demanding conditions, and economic efficiency. Although crushed stone has excellent drainage performance, it has a clogging phenomenon due to its high permeability. Accordingly, the materials need to be separated with a geotextile wrapping method. Additionally, the 3D numerical analysis and a large model experiment were conducted to evaluate the seepage characteristics and in-site application of the crushed stone filter. As a result, the crushed stone filter showed an excellent dispersion effect by reducing the pore water pressure by about 9.5 times that of the sand filter. In addition, it was shown that the safety factor for piping increased significantly by reducing internal erosion. When comparing the economics and supply and demand conditions of the material, crushed stone was evaluated as an effective method to reduce the internal erosion of embankments at deteriorated reservoirs.

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.