• 제목/요약/키워드: Pore channel

검색결과 114건 처리시간 0.024초

Microstructure Control of HAp Based Artificial Bone Using Multi-extrusion Process

  • Jang, Dong-Woo;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Porous hydroxyapatite has been widely used as clinical implanted material. However, it has poor mechanical properties. To increase the strength as well as the biocompatibility of the porous HAp based artificial bone, it was fabricated by multi-extrusion process. Hydroxyapatite and graphite powders were mixed separately with ethylene vinely acetate and steric acid by shear mixing process. Hydroxyapatite composites containing porous microstructure were fabricated by arranging it in the die and subject it to extrusion process. Burn-out and sintering processes were performed to remove the binder and graphite as well as increase the density. The external and internal diameter of cylindrical hollow core were approximately 10.4 mm and 4.2 mm, respectively. The size of pore channel designed to increase bone growth (osteconduction) was around 150 ${\mu}m$ in diameter. X-ray diffraction analysis and SEM observation were performed to identity the crystal structure and the detailed microstructure, respectively.

  • PDF

The occurrence of the ciguatera fish poisoning producing dinoflagellate genus Gambierdiscus in Pakistan waters

  • Munir, Sonia;Siddiqui, P.J.A.;Morton, Steve L.
    • ALGAE
    • /
    • 제26권4호
    • /
    • pp.317-325
    • /
    • 2011
  • Five benthic species of the genus Gambierdiscus (Dinophyceae) were observed for the first time in the coastal waters of Pakistan, Northern Indian Ocean. The morphology of the epiphytic, ciguatera-related toxic species G. toxicus, G. belizeanus, G. polynesiensis, G. australes and G. cf. yasumotoi are presented here, described by the Kofoid system of thecal plates Po, 3', 7", 6c, 8s, 5"', 1p, 2"" with differences in cell shape, cell size, plates, pores around the apical pore plate by using light and scanning electron microscopy. The occurrence of these potentially toxic dinoflagellate species in Pakistani coastal areas of Manora Channel and Balochistan during high temperatures of 28-$32^{\circ}C$ is cause of concern for human health impacts from ciguatera fish poisoning.

Identification of Inhibitors Against BAK Pore Formation using an Improved in vitro Assay System

  • Song, Seong-Soo;Lee, Won-Kyu;Aluvila, Sreevidya;Oh, Kyoung Joon;Yu, Yeon Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.419-424
    • /
    • 2014
  • The pro-apoptotic BCL-2 family protein BID activates BAK and/or BAX, which form oligomeric pores in the mitochondrial outer membrane. This results in the release of cytochrome c into the cytoplasm, initiating the apoptotic cascade. Here, we utilized liposomes encapsulating sulfo-rhodamine at a controlled temperature to improve upon a previously reported assay system with enhanced sensitivity and specificity for measuring membrane permeabilization by BID-dependent BAK activation. BAK activation was inhibited by BCL-$X_L$ protein but not by a mutant protein with impaired anti-apoptotic activity. With the assay system, we screened a chemical library and identified several compounds including trifluoperazine, a mitochondrial apoptosis-induced channel blocker. It inhibited BAK activation by direct binding to BAK and blocking the oligomerization of BAK.

Sulfhydryl Oxidation Regulates Cloned Mechanosensitive Two-Pore $K^+$ Channel Expressed in Mammalian Cell Lines

  • Kim, Yangmi;Park, Kyoung-Sun;Earm, Yung-E;Ho, Won-Kyung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.34-34
    • /
    • 2002
  • Oxidative stress has been considered as a major cause of inducing cell damage, but it is recently recognized that mild oxidative stress or receptor-mediated production of ROS contributes to the regulation of various cellular functions. Several ion channels, such as L-type $Ca^{2+}$ channels and $Ca^{2+}$-activated $K^{+}$ channels, have been shown to be regulated by oxidation of thiol group in their structure, and are suggested to be involved in ROS-sensitive cellular signaling.(omitted)

  • PDF

Mitochondrial DNA Mutation and Oxidative Stress

  • Kim, Tae-Ho;Kim, Hans-H.;Joo, Hyun
    • Interdisciplinary Bio Central
    • /
    • 제3권4호
    • /
    • pp.16.1-16.8
    • /
    • 2011
  • Defects in mitochondrial DNA (mtDNA) cause many human diseases and are critical factors that contribute to aging. The mechanisms of maternally-inherited mtDNA mutations are well studied. However, the role of acquired mutations during the aging process is still poorly understood. The most plausible mechanism is that increased reactive oxygen species (ROS) may affect the opening of mitochondrial voltage dependent anion channel (VDAC) and thus results in damage to mtDNA. This review focuses on recent trends in mtDNA research and the mutations that appear to be associated with increased ROS.

고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구 (Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel)

  • 최지영;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

Vibrio vulnificus cytolysin의 흰쥐 혈소판 응집 기전 (Mechanism of Vibrio vulnificus Cytolysin on Rat Platelet Aggregation)

  • 김현철;채수완;이병창;은재순
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.802-808
    • /
    • 1999
  • Vibrio vulnificus cytolysin has been incriminated as one of the important virulence determinants in V. vulnificus infection. In the present study, the effects of Vibrio vulnificus cytolysin on platelets were examined. Vibrio vulnificus cytolysin induced platelet aggregation and increased intracellular calcium concentration ($[Ca^{2+}]_i$) of rat platelets. These effects were abolished in $Ca^{2+}-free$ buffer (2 mM EGTA). Cytolysin also potentiated ADP-and collagen-induced platelet aggregation. Lanthanum (2 mM) inhibited cytolysin-diduced platelet aggregation. However, another $Ca^{2+}$ channel blockers, verapamil ($20{\;}{\mu}M$) or mefenamic acid ($20{\;}{\mu}M$) did not block cytolysin-induced platelet aggregation. Osmotic protectants, sucrose (50 mM) and raffinose (50 nM) suppressed platelet aggregation by 35.9% and 63.4%, respectively. V. vulnificus cytolysin increased membrane conductances of platelet membranes. These results suggest that cytolysin-induced platelet aggregation is mediated via lanthanum sensitive-calcium influx which resulted from the pore formation by V. vulnificus cytolysin.

  • PDF

PCL Infiltration into a BCP Scaffold Strut to Improve the Mechanical Strength while Retaining Other Properties

  • Kim, Min-Sung;Kim, Yang-Hee;Park, Ih-Ho;Min, Young-Ki;Seo, Hyung-Seok;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.331-337
    • /
    • 2010
  • A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from $80\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the $10\;{\mu}m$ to $20\;{\mu}m$ rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.

The TREK2 Channel Is Involved in the Proliferation of 253J Cell, a Human Bladder Carcinoma Cell

  • Park, Kyung-Sun;Han, Min Ho;Jang, Hee Kyung;Kim, Kyung-A;Cha, Eun-Jong;Kim, Wun-Jae;Choi, Yung Hyun;Kim, Yangmi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.511-516
    • /
    • 2013
  • Bladder cancer is the seventh most common cancer in men that smoke, and the incidence of disease increases with age. The mechanism of occurrence has not yet been established. Potassium channels have been linked with cell proliferation. Some two-pore domain $K^+$ channels (K2P), such as TASK3 and TREK1, have recently been shown to be overexpressed in cancer cells. Here we focused on the relationship between cell growth and the mechanosensitive K2P channel, TREK2, in the human bladder cancer cell line, 253J. We confirmed that TREK2 was expressed in bladder cancer cell lines by Western blot and quantitative real-time PCR. Using the patch-clamp technique, the mechanosensitive TREK2 channel was recorded in the presence of symmetrical 150 mM KCl solutions. In 253J cells, the TREK2 channel was activated by polyunsaturated fatty acids, intracellular acidosis at -60 mV and mechanical stretch at -40 mV or 40 mV. Furthermore, small interfering RNA (siRNA)-mediated TREK2 knockdown resulted in a slight depolarization from $-19.9mV{\pm}0.8$ (n=116) to $-8.5mV{\pm}1.4$ (n=74) and decreased proliferation of 253J cells, compared to negative control siRNA. 253J cells treated with TREK2 siRNA showed a significant increase in the expression of cell cycle boundary proteins p21 and p53 and also a remarkable decrease in protein expression of cyclins D1 and D3. Taken together, the TREK2 channel is present in bladder cancer cell lines and may, at least in part, contribute to cell cycle-dependent growth.

Enhanced Expression of TREK-1 Is Related with Chronic Constriction Injury of Neuropathic Pain Mouse Model in Dorsal Root Ganglion

  • Han, Hyo Jo;Lee, Seung Wook;Kim, Gyu-Tae;Kim, Eun-Jin;Kwon, Byeonghun;Kang, Dawon;Kim, Hyun Jeong;Seo, Kwang-Suk
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.252-259
    • /
    • 2016
  • Neuropathic pain is a complex state showing increased pain response with dysfunctional inhibitory neurotransmission. The TREK family, one of the two pore domain $K^+$ (K2P) channel subgroups were focused among various mechanisms of neuropathic pain. These channels influence neuronal excitability and are thought to be related in mechano/thermosensation. However, only a little is known about the expression and role of TREK-1 and TREK-2, in neuropathic pain. It is performed to know whether TREK-1 and/or 2 are positively related in dorsal root ganglion (DRG) of a mouse neuropathic pain model, the chronic constriction injury (CCI) model. Following this purpose, Reverse Transcription Polymerase Chain Reaction (RT-PCR) and western blot analyses were performed using mouse DRG of CCI model and compared to the sham surgery group. Immunofluorescence staining of isolectin-B4 (IB4) and TREK were performed. Electrophysiological recordings of single channel currents were analyzed to obtain the information about the channel. Interactions with known TREK activators were tested to confirm the expression. While both TREK-1 and TREK-2 mRNA were significantly overexpressed in DRG of CCI mice, only TREK-1 showed significant increase (~9 fold) in western blot analysis. The TREK-1-like channel recorded in DRG neurons of the CCI mouse showed similar current-voltage relationship and conductance to TREK-1. It was easily activated by low pH solution (pH 6.3), negative pressure, and riluzole. Immunofluorescence images showed the expression of TREK-1 was stronger compared to TREK-2 on IB4 positive neurons. These results suggest that modulation of the TREK-1 channel may have beneficial analgesic effects in neuropathic pain patients.