• Title/Summary/Keyword: Pore Volume

Search Result 829, Processing Time 0.033 seconds

Removal of Pesticide (Oxamyl) from Water using Activated Carbons Developed from Apricot Stones

  • El-Nabarawy, Th.;Sayed Ahmed, S.A.;Youssef, A.M.
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.299-306
    • /
    • 2007
  • Four stream- activated carbons were prepared by carbonizing apricot stones at $600^{\circ}C$ followed by gasification with steam at $950^{\circ}C$ to burn-off's=17, 32, 49 and 65%. The textural parameters of these activated carbons were determined from nitrogen adsorption results at 77 K. The total pore volume and the mean pore radius increased with the increase of % burn-off whereas the surface area increased with the increase of burn- off from 17 to 32 and further to 49%. Further increase of burn-off to 65% was associated with a considerable decrease in surface area as a result of pronounced pore widening due to pore erosion. The surface pH values of the carbons investigated range between 7.1 and 8.2. The adsorption of oxamyl onto the activated carbon followed pseudo-second order kinetics and the equilibrium adsorption isotherms fitted Langmuir adsorption model. The adsorption of oxamyl proved to be of the physical type and took place in non-micropores. The amount of oxamyl adsorbed expressed as $q_m$ depends to a large extent to the surface area located in non-micropores $S^{\propto}\;_n$, where a straight line relationship passing through the origin was obtained.

The Synthesis and Pore Property of Hydrogen Membranes Derived from Polysilazane as Inorganic Polymer (무기 고분자인 폴리실라잔을 이용한 수소 분리막의 합성 및 기공특성)

  • Kwon, Il-Min;Song, In-Hyuck;Park, Young-Jo;Lee, Jae-Wook;Yun, Hui-Suk;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.462-466
    • /
    • 2009
  • We investigated the pore properties of inorganic membranes applied for hydrogen separation industry. Inorganic membranes were derived from polysilazanes. The thermal reactions involved were studied using thermogravimetry(TG) and IR spectroscopy(FTIR) of the solids. To determine the thermal effect of pore properties, polysilazanes were pyrolysed in inert atmosphere. Pore volume and BET surface area showed the maximum value at a pyrolysis temperature of $500^{\circ}C$. For amorphous SiCN membrane derived from polysilazanes, selectivity of $H_2/N_2$ was 4.81 at $600^{\circ}C$.

Tailoring Porosity of Colloidal Boehmite Sol by Controlling Crystallite Size

  • Park, Myung-Chul;Lee, Sung-Reol;Kim, Hark;Park, In;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1962-1966
    • /
    • 2012
  • Boehmite sols have been prepared by crystallization of amorphous aluminum hydroxide gel obtained by hydrolysis and peptization of aluminum using acetic acid. The size of the boehmite crystallites could be controlled by Al molar concentration in amorphous gel by means of controlling grain growth at nucleation stage. The size of boehmite increases as a function of Al molar concentration. With increasing boehmite crystallite size, the $d_{(020)}$ spacing and the specific surface area decreases, whereas the pore volume increases along with pore size. Especially, the pore size of the boehmite sol particles is comparable to the crystallite size along the b axis, suggesting that the fibril thickness along the b axis among the crystallite dimensions of the boehmite contributes to the pore size. Therefore, the physical properties of boehmite sols can be determined by the crystallite size controlled as a function of initial Al concentration.

A Study on Characterization of Surface and Pore for Ag-impregnated Activated Carbon (은이 침착된 활성탄의 표면과 세공특성에 관한 연구)

  • Kim, Jong-Gyu;Oh, Won-Chun;Kim, Myoung-Kun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.729-733
    • /
    • 1998
  • The surface structure and the pore size distribution of the activated carbon impregnated with silver have been investigated. It has been confirmed that the impregnants had an effect only on the external surface, not on the internal surface and that adsorption isotherms of both impregnated and non-impregnated activated carbons were classified as a typical BET type-I. As the amount of the impregnants increased, the amounts of adsorption, the specific surface area, and the micropore volume decreased and the window blocking was observed. The average pore diameter of the activated carbon impregnated with silver was observed to show the constant values regardless of the amount of the impregnants.

  • PDF

Fundamental Properties of MgO Base Ceramic Mortar for Concrete Repair Material (MgO계 세라믹 모르타르를 활용한 콘크리트 보수재료의 기초물성평가)

  • Park, Joon-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.407-413
    • /
    • 2017
  • The fundamental property of magnesia phosphate cement (MPC) for concrete repair material was investigated in this research. For mechanical properties, setting time, compressive strength and tensile/flexural bond strength were measured, and hydration products were detected by X-ray diffraction. The specimens were manufactured with dead burnt magnesia and potassium dihydrogen phosphate was admixed to activate the hydration of magnesia and a borax was used as a retarder. To observe the pore structure and ionic permeability of MPC mortar, mercury intrusion porosimetry was performed together with rapid chloride penetration test (RCPT). As a result, time to set of Fresh MPC mortar was in range of 16 to 21 min depend on the M/P ratio. Borax helped delaying setting time of MPC to 68 min. The compressive strength of MPC with M/P of 4 was sharply developed to 30 MPa within 12 hours. The compressive strength of MPC mortar was in range of 11.0 to 30.0 MPa depend on the M/P ratio at 12 hours of curing. Both tensile and flexural bond strength of MPC to old substrate (i.e. MPC; New substrate to OPC; Old substrate) were even higher than ordinary Portland cement mortar (i.e. [OPC; New substrate] to [OPC; Old substrate]) does, accounting 19 and 17 MPa, respectively. The total pore volume of MPC mortar was lower than that of OPC mortar. MPC mortar had the entrained air void rather than capillary pore. The RCPT showed that total charge passed of OPC mortar had more than that of MPC mortar, which can be explained by the pore volume and pore distribution.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

Effect of Waste Cooking Oil on Durability of High Volume Mineral Admixture Concrete (폐유지류가 혼화재 다량 치환 콘크리트의 내구성에 미치는 영향)

  • Han, Min-Cheol;Woo, Dae-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • This paper is to investigate an effect of waste cooking oil(WCO) on the engineering properties and durability of high volume admixture concrete. Fly ash with 30% and blast furnace slag with 60% were incorporated in OPC to fabricate high volume admixture concrete with 0.5 of W/B. Emulsified refining cooking oil(ERCO) was made by mixing WCO and emulsifying agent to improve fluidity. ERCO was replaced by cement from 0.25 to 1.0%. As results, the increase of ERCO resulted in decrease of slump and air contents. For compressive strength, the use of ERCO led to decrease the compressive strength at 28 days, while it had similar strength or much higher strength than plain concrete at 180 days. Resistance to carbonation and chloride penetration was improved with the increase of ERCO contents due to decreased pore distribution by saponification between ERCO and concrete, while freeze-thaw resistance was degraded due to air loss.

Effects of Micropores on the Freezing-Thawing Resistance of High Volume Slag Concrete (슬래그를 다량 치환한 콘크리트의 동결융해 저항성능에 미치는 미세공극의 영향)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Song, Gwon-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, effects of micropores on the freezing-thawing resistance of high volume slag concrete are reviewed. Concrete was made with slag which contains the ground granulated blast furnace slag(GGBS) and the pig iron preliminary treatment slag(PS) by replacing 0, 40, 70 %, then compressive strength, freezing-thawing resistance, micropores were reviewed. Also, specified design strength, target air contents were set. Deterioration was induced by using 14-day-age specimen which has low compressive strength for evaluating deterioration by freeze-thawing action. As results of the experiment, despite of specified design strength which has been set similarly and ensured target air contents, the pore size distribution of the concrete showed different results. Micropores in GGBS70 specimen have small amount of water which is likely to freeze because there is small amount of pore volume of 10~100 nm size at 0 cycle which has not been influenced by freezing-thawing. For these reasons, it was confirmed that the freezing-thawing resistance performance of GGBS70 is significantly superior than other specimens because relatively small expansion pressure is generated compared to the other specimens.

The deactivation behavior of SCR catalyst by alkali and alkali earth metal (알칼리 및 알칼리 토금속에 의한 SCR 촉매 비활성 거동)

  • Han, Seungyun;Shin, Min-Chul;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.238-242
    • /
    • 2016
  • The effect of the alkali, alkali earth metal elements on selective catalytic reduction(SCR) catalyst deactivation behavior were investigated in terms of microstructure, surface area, pore volume and De-NOx test. Poisoned SCR catalyst were manufactured by injection of $K_2CO_3$, $Na_2CO_3$, $Ca(CH_3COO)_2{\cdot}H_2O$, $C_4H_6MgO_4{\cdot}4H_2O$, $H_3PO_4$ solutions in the new SCR catalyst at $350^{\circ}C$ for 6 hours. New and poisoned catalysts surface were similar. But specific surface area, pore volume decrease from Na, Mg, K, Ca, P compared to new SCR catalyst. Especially, Na poisoned catalyst surface area and pore size extremely decreased by $10.20m^2/g$, $0.061cm^2/g$. De-NOx test results of new and poisoned catalysts at $150{\sim}450^{\circ}C$ indicated that alkali metal (K, Na) poisoned SCR catalysts have the lowest De-NOx efficiency, alkali earth metal poisoned SCR catalysts (Ca, Mg) De-NOx efficiency are higher than alkali metal poisoned SCR catalysts. P poisoned SCR catalyst De-NOx efficiency is similar new SCR catalyst. It were considered that physical deactivation of SCR catalyst was affected by SCR catalyst surface area and pore volume change.