• Title/Summary/Keyword: Pore Control

Search Result 450, Processing Time 0.028 seconds

Microstructure and Pore Size Control of Silica Membrane for Gas Separation at Elevated Temperatures

  • Lee Kew-Ho;Sea Bongkuk;Lee Dong-Wook
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 2005
  • Among ceramic membranes developed to date, amorphous silica membranes are attractive for gas separation at elevated temperatures. Most of the silica membranes can be formed on a porous support by sol-gel or chemical vapor deposition (CVD) process. To improve gas permselectivity of the membrane, well-controlled pores having desired size and chemical affinity between permeates and membrane become important factors in the preparation of membranes. In this article, we review the literature and introduce our technologies on the microstructure to be solved and pore size control of silica membranes using sol-gel and CVD methods.

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

Evaluation of pore water pressure on the lining during tunnel operation (운영 중 터널에 작용하는 간극수압 평가기법)

  • Shin, Jong-Ho;Shin, Yong-Suk;Choi, Kyu-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most of tunnel is located in the ground. In case of leakage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, the pore water pressure can be developed on the lining due to the deterioration of the drainage system. The increased pore water pressure on the lining is termed here as 'residual pore water pressure'. Residual pore water pressure can be measured by piezometer, but it is generally not allowed because of damages of drainage system. Therefore, an indirect and nondestructive method is required for evaluating the residual pore water pressure. Moreover, understanding of pore water pressure is needed during healthy operation of the lining. In this study, a new method for evaluation of pore water pressure on the lining during operation is proposed using theoretical and numerical analysis. It is shown that the method is particularly useful for stability investigation of pore water pressure on the lining during operation using theoretical analysis with normalized pore water pressure curve.

  • PDF

Development of a Method for Detecting Unstable Behaviors in Flume Tests using a Univariate Statistical Approach

  • Kim, Seul-Bi;Seo, Yong-Seok;Kim, Hyeong-Sin;Chae, Byung-Gon;Choi, Jung-Hae;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.191-199
    • /
    • 2014
  • We describe a method for detecting slope instability in flume tests using pore pressure and water content data in conjunction with a statistical control chart analysis. Specifically, we conducted univariate statistical analysis on x-MR control chart data (pore pressure and water content) collected at several points along the flume slope, which we separated into three parts: upper, middle, and lower. To assess our results in the context of landslide forecasting and warning systems, we applied control limit lines at $1{\sigma}$, $2{\sigma}$, and $3{\sigma}$ levels of uncertainty. In doing so, we observed that dispersion time varies depending on the control limit line used. Moreover, the detection of instabilities is highly dependent on the position and type of sensor. Our findings indicate that different characteristics of the data on various factors predict slope failure differently and these characteristics can be identified by univariate statistical analysis. Therefore, we suggest that a univariate statistical approach is an effective method for the early detection of slope instability.

Application of the H Infinity Control Principle to the Sodium Ion Selective Gating Channel on Biological Excitable Membranes

  • Hirayama, Hirohumi
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-38
    • /
    • 2004
  • We proposed the infinity control principle to evaluate the Biological function. The H infinity control was applied to the Sodium (Na) ion selective gating channel on the excitable cellular membrane of the neural system. The channel opening, closing and inactivation processes were expressed by movements of three gates and one inactivation blocking particle in the channel pore. The rate constants of the channel state transition were set to be voltage dependent. The temporal changes in amounts per unit membrane area of the channel states were expressed by means of eight differential equations. The biochemical mimetic used to complete the Na ion selective channel was regarded as noise. The control inputs for ejecting the blocking particle with plugging in the channel pore were set for the active transition from inactivated states to a closed or open state. By applying the H infinity control, we computed temporal changes in the channel states, observers, control inputs and the worst case noises. The present paper will be available for evaluating the noise filtering function of the biological signal transmission system.

Preparation and Optical Characterization of Mesoporous Silica Films with Different Pore Sizes

  • Bae, Jae-Young;Choi, Suk-Ho;Bae, Byeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1562-1566
    • /
    • 2006
  • Mesoporous silica films with three different pore sizes were prepared by using cationic surfactant, non-ionic surfactant, or triblock copolymer as structure directing agents with tetramethylorthosilicate as silica source in order to control the pore size and wall thickness. They were synthesized by an evaporation-induced self-assembly process and spin-coated on Si wafer. Mesoporous silica films with three different pore sizes of 2.9, 4.6, and 6.6 nm and wall thickness ranging from $\sim$1 to $\sim$3 nm were prepared by using three different surfactants. These materials were optically transparent mesoporous silica films and crack free when thickness was less than 1 m m. The photoluminescence spectra found in the visible range were peaked at higher energy for smaller pore and thinner wall sized materials, consistent with the quantum confinement effect within the nano-sized walls of the silica pores.

Control of Pore Characteristics of Porous Glass in the $ZrO_2.SiO_2$ System Prepared by the Sol-Gel Method (졸-겔법으로 제조한 $ZrO_2.SiO_2$다공질유리의 세공제어)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.485-491
    • /
    • 1993
  • Porous glass in the ZrO2.SiO2 system containning up to 30mol% zirconia were prepared by the sol-gel method from metal alkoxides and their pore characteristics with reaction parameters were investigated. The gels were made by hydrolyzing and condensation of the mixed metla alkoxides and were converted into the porous glass by heating up to $700^{\circ}C$. As a results, the mean pore radius became larger with increasing contents of HCl, H2O and hydrolysis temperature, and an alcohol with a large molecular weight for making the porous glass. In the case of 20ZrO2.80SiO2 porous glass with heated at $700^{\circ}C$, HCl and H2O content was 0.3mol and 4mol, the specific surface area was 284$m^2$/g, average mean pore radius was about 19.4$\AA$, porosity was 22.55% and pore characteristics depended on heating temperature.

  • PDF

A Study on the Micropores of BTCA Finished Cotton Fabrics (BTCA로 방추가공된 면직물의 미세기공구조 측정)

  • 최연주;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.7
    • /
    • pp.1078-1084
    • /
    • 2002
  • Cotton fabrics were treated with 1,2,3,4-butanetetracarboxylic acid(BTCA) to impart durable press performance, which is formaldehyde-free DP finishing reagent. The pore structures of BTCA treated cottons were compared using a reverse gel permeation chromatographic technique(reverse GPC). A series consisting 4 kinds of water soluble sugars was used to study the elution characteristics of columns prepared from cotton fibers. From these data, differences in pore size distribution in the control and BTCA treated cottons were distinguished. BTCA crosslinks cellulose molecules provided wrinkle resistance to the treated cotton fabrics through ester linkages. Although crosslinking of cotton with BTCA reduced accessible internal volume across the entire range of pore size, differences in line pores were larger than in small pores. BTCA treated cotton exhibited reductions over 40% in large pore sizes.

The formation of highly ordered nano pores in Anodic Aluminum Oxide

  • Im, Wan-soon;Cho, Kyung-Chul;Cho, You-suk;Park, Gyu-Seok;Kim, Dojin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.53-53
    • /
    • 2003
  • There has been increasing interest in the fabrication of nano-sized structures because of their various advantages and applications. Anodic Aluminum Oxide (AAO) is one of the most successful methods to obtain highly ordered nano pores and channels. Also It can be obtained diverse pore diameter, density and depth through the control of anodization condition. The three types of substrates were used for anodization; sheets of Aluminum on Si wafer and Aluminum on Mo-coated Si wafer. In Aluminum sheet, a highly ordered array of nanoholes was formed by the two step anodization in 0.3M oxalic acid solutions at 10$^{\circ}C$ After the anodization, the remained aluminum was removed in a saturated HgCl$_2$ solution. Subsequently, the barrier layer at the pore bottom was opened by chemical etching in phosphoric acid. Finally, we can obtain the through-channel membrane. In these processes, the effect of various parameters such as anodizing voltage, anodizing time, pore widening time and pre-heat treatment are characterized by FE-SEM (HITACH-4700). The pore size. density and growth rate of membrane are depended on the anodizing voltage and temperature respectively. The pore size is proportional to applied voltage and pore widening time The pore density can be controlled by anodizing temperature and voltage.

  • PDF

A Study on the Effect of Face Washing on Pore Changes (모공 변화에 대한 세안의 효과 연구)

  • Seung Woo Im;Jin Suk Koo
    • The Korea Journal of Herbology
    • /
    • v.38 no.3
    • /
    • pp.11-18
    • /
    • 2023
  • Objectives : This study aimed to investigate the effect of face washing on pore changes in a controlled environment without external condition changes. The research compared the results of water washing, foam cleanser (F/C) washing, and herb cp (cold process) soap washing on pore reduction. Methods : The experiment was conducted using the same water and towel, in the same place, before and 10 minutes after washing. The skin test was performed before and after washing, and three cases of herb cp soap were tested: Ginseng, Liriope platyphylla (LP), and Castanea crenata inner shell (CCIS). A control group was established using water and F/C washing. Results : Water washing and F/C washing showed a similar degree of pore reduction. Men and individuals with complex skin types showed significantly larger pores. LP cp soap showed the greatest significance in pore reduction. Conclusion : This study found that pore shrinking effects were observed regardless of the use of facial cleansers. LP cp soap was found to be the most effective in reducing pore size. It is important to emphasize the importance of face washing for individuals with large pores and combination skin types, especially men.