• 제목/요약/키워드: Population size

검색결과 1,834건 처리시간 0.027초

Rhizosphere와 해수에 있어서의 Azotobacter의 분포 (Distribution of Azotobacter in Rhizosphere and Sea)

  • 홍순우;최영길
    • 미생물학회지
    • /
    • 제12권1호
    • /
    • pp.15-24
    • /
    • 1974
  • This experiment has been carried out with a view to elucidating the distribution of Azotobacter and their population size in rhizosphere and sea and designed ro compare the results with some environmental factors. Results of the experiment are summarized as follows: 1) It was observed that the population sizes of Azotobacter were decided upon the moisture content of soil and that the soil pH was one of the most impertant factors influencing the distribution of Azotobacter. 2)Population sizes of Azotobacter in rhizosphere were changed in accordance with the kinds of vegetation on soil: The rhizosphere where bamboo, corn, legume, and oak inhabit showed the largest population size of Azotobacter. On the other hand, rhizosphere of ginseng revealed no Azotobacter. However, the largest population of general fungi were measured at the rhizosphere. 3)Comparing the population sizes of general microbes in rhizosphere with those of non-rhizosphere, the population sizes of microbes in rhizosphere are larger than those of non-rhizosphere. 4)In coastal environments, population sizes of Azotobacter in surface water of sea are similar to those of the soil(mud) of tidal land. But the sizes are generally smaller than those of terrestrial soils.

  • PDF

Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip

  • Sharma, Aditi;Lim, Dajeong;Chai, Han-Ha;Choi, Bong-Hwan;Cho, Yongmin
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.230-233
    • /
    • 2016
  • Linkage disequilibrium (LD) is the non-random association between the loci and it could give us a preliminary insight into the genetic history of the population. In the present study LD patterns and effective population size (Ne) of three Korean cattle breeds along with Chinese, Japanese and Mongolian cattle were compared using the bovine Illumina SNP50 panel. The effective population size (Ne) is the number of breeding individuals in a population and is particularly important as it determines the rate at which genetic variation is lost. The genotype data in our study comprised a total of 129 samples, varying from 4 to 39 samples. After quality control there were ~29,000 single nucleotide polymorphisms (SNPs) for which $r^2$ value was calculated. Average distance between SNP pairs was 1.14 Mb across all breeds. Average $r^2$ between adjacent SNP pairs ranged between was 0.1 for Yanbian to 0.3 for Qinchuan. Effective population size of the breeds based on $r^2$ varied from 16 in Hainan to 226 in Yanbian. Amongst the Korean native breeds effective population size of Brindle Hanwoo was the least with Ne = 59 and Brown Hanwoo was the highest with Ne = 83. The effective population size of the Korean cattle breeds has been decreasing alarmingly over the past generations. We suggest appropriate measures to be taken to prevent these local breeds in their native tracts.

Linkage Disequilibrium and Effective Population Size in Hanwoo Korean Cattle

  • Lee, S.H.;Cho, Y.M.;Lim, D.;Kim, H.C.;Choi, B.H.;Park, H.S.;Kim, O.H.;Kim, S.;Kim, T.H.;Yoon, D.;Hong, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권12호
    • /
    • pp.1660-1665
    • /
    • 2011
  • This study presents a linkage disequilibrium (LD) analysis and effective population size ($N_e$) for the entire Hanwoo Korean cattle genome, which is the first LD map and effective population size estimate ever calculated for this breed. A panel of 4,525 markers was used in the final LD analysis. The pairwise $r^2$ statistic of SNPs up to 50 Mb apart across the genome was estimated. A mean value of $r^2$ = 0.23 was observed in pairwise distances of <25 kb and dropped to 0.1 at 40 to 60 kb, which is similar to the average intermarker distance used in this study. The proportion of SNPs in useful LD ($r^2{\geq}0.25$) was 20% for the distance of 10 and 20 kb between SNPs. Analyses of past effective population size estimates based on direct estimates of recombination rates from SNP data demonstrated that a decline in effective population size to $N_e$ = 98.1 occurred up to three generations ago.

Extent of linkage disequilibrium and effective population size of the Landrace population in Korea

  • Shin, Donghyun;Kim, Sung-Hoon;Park, Joowan;Lee, Hak-Kyo;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1078-1087
    • /
    • 2018
  • Objective: The genetic diversity of the Landrace population, a representative maternal pig breed in Korea, is important for genetic improvement. Previously, the effective population size (Ne) has been used to infer the genetic diversity of a population of interest. In this study, we aimed to use single nucleotide polymorphism (SNP) data to characterize linkage disequilibrium (LD) and the Ne of the Korean Landrace population. Methods: We genotyped 1,128 Landrace individuals from three representative Korean major grand-grand-parent (GGP) farms using the Illumina PorcineSNP60 version2 BeadChip, which covers >61,565 SNPs located across all autosomes and mitochondrial and sex chromosomes. We estimated the expected LD and current Ne, as well as ancestral Ne. Results: In the Korean Landrace population, the mean LD ($r^2$) of 3.698 million SNP pairs was $0.135{\pm}0.204$. The mean $r^2$ decreased slowly with as the distance between SNPs increased, and remained constant beyond 3 Mb. According to the $r^2$ calculations, 8,085 of 3.698 million SNP pairs were in complete LD. The current Ne (${\pm}$standard deviation) of the Korean Landrace population is approximately 92.27 [79.46; 105.07] individuals. The ancestral Ne exhibited a slow and steady decline from 186.61 to 92.27 over the past 100 generations. Additionally, we observed more a rapid Ne decrease from the past 20 to 10 generations ago, compared with other intervals. Conclusion: We have presented an overview of LD and the current and ancestral Ne values in the Korean Landrace population. The mean LD and current Ne for the Korean Landrace population confirm the genetic diversity and reflect the history of this pig population in Korea.

선발과정에서의 세대별 QTL 좌위 고정에 관한 연구 (The Response of QTL in Generation during Selection)

  • 이지웅
    • 한국수정란이식학회지
    • /
    • 제20권3호
    • /
    • pp.217-232
    • /
    • 2005
  • The objective of this study was to determine the response of QTL in each generation during selection to develop inbred lines. The simulation program was written in Fortran. Magnitude of QTL effects, base population size, number of QTL assigned to population, and the allelic frequency for the positive allele at each major QTL were highly associated with number of generations to fixation of QTLs during selection. Populations with larger QTL effects and larger base population size had more individuals with fixed QTL. However, a smaller number of QTL assigned to population had a higher fraction of individuals with fixed QTL at each generation compared with more populations with QTL. This simulation study will help to design biological experiments for detection of QTL-marker association using inbred population and to determine optimum number of lines with fixed QTL during inbred line development. To complement this study, additional simulation should be need with abundant replicates, more various population sizes, magnitude of QTL effects, and recombination between markers and QTLs.

Population Structure and Regeneration Status of Cyathea gigantea (Wallich ex Hook. f.) Holttum, a Tree Fern in Arunachal Pradesh, India

  • Paul, Ashish;Bhattacharjee, Sonal;Choudhury, Baharul Islam;Khan, Mohamed Latif
    • Journal of Forest and Environmental Science
    • /
    • 제31권3호
    • /
    • pp.164-176
    • /
    • 2015
  • Cyathea gigantea is a tree fern distributed throughout humid tropical regions of northeast India and other parts of the country. However, wild populations of this species are largely affected by various natural and anthropogenic activities. Therefore, an attempt was made to study the population structure and regeneration status of C. gigantea in and around greater Itanagar area of Papum Pare district, Arunachal Pradesh. Altogether 45 patches, ranging from 19.63 to $260m^2$ of area, were randomly sampled to study population structure and regeneration status of the species. Population study showed highest number of youngs in the height class of 0.50-0.75 m while, immatures were recorded highest in the height class of 2.0 to 2.5 m. Majority of the matures belonged to 6-9 m height class while it was recorded maximum in the diameter class of 10-15 cm. Average density of C. gigantea was $0.07individuals\;ha^{-1}$ which varied greatly among different patches with a range of 2 to 14. Significant correlations were found between patch size and density of youngs, immatures, matures and total density. Maximum concentration of youngs was observed in patch size $60-140m^2$, while for immatures, it was highest in patch size $20-160m^2$. Similarly, highest concentration of matures was observed in patch size $20-80m^2$ and $80-180m^2$. Population structure of the total population exhibited inverted pyramid shaped distribution. Population structure consisting of youngs, immatures, matures showed that around 60% patches lack of regenerating individuals which depict very poor natural regeneration of the species. Effective conservation strategies are therefore to be formulated to save C. gigantea from the threat of extinction in near future.

황해 및 동중국해 참조기, Larimichthys polyactis 자원의 장기변동 (Long-term changes in the small yellow croaker, Larimichthys polyactis, population in the Yellow and East China Seas)

  • 연인자;이동우;이재봉;최광호;홍병규;김주일;김영섭
    • 수산해양기술연구
    • /
    • 제46권4호
    • /
    • pp.392-405
    • /
    • 2010
  • The population of small yellow croaker, Larimichthys polyactis, in the Yellow and East China Seas has decreased significantly since the mid 1970s. Several management measures have been introduced to conserve it, but population size remains low. To rebuild this population, it is now necessary to consider more effective management methods based on the stock assessment. To determine long-term population changes, fishery and biological data collected over 34 years (1969-2002) were analysed. Yearly fish length compositions were analysed for the time periods 1968 through 1970, 1978 through 1982, and 1993 through 2002; and catch data was available from 1969 to 2002. Annual population sizes were calculated based on length composition, the relationship between total length and body weight, and total landings. Analyses showed that since the 1970s, average size of harvested fish decreased; the proportion of less mature fish (smaller than the 50% maturity length, 19cm) in catches has increased and the estimated biomass has decreased significantly. Consequently, the main management recommendation is that juvenile fish need to be better protected to allow the rebuilding of resources to a more sustainable population level. This will require fish size limit, permissible mesh size, and closed area and season regulations.

p관리도의 불량률의 변화 탐지 (Detection of Changes of the Population Fraction Nonconforming in the p Control Chart)

  • 장경;양문희
    • 품질경영학회지
    • /
    • 제25권3호
    • /
    • pp.74-85
    • /
    • 1997
  • In this paper we calculate the subgroup size necessary for detecting the change of percent defective with several detection probabilities for orginal population fraction nonconforming p, changed population fraction nonconforming $p^*$, and the ratio k=$p^*$/p in the usage of p control charts. From our calculation we can know the error level of normal a, pp.oximation in detection probability calculation and recommend the subgroup size with lower error levels of normal a, pp.oximation, and then we show the reasonable subgroup size necessary for p, $p^*$, k, and the detection probability of the change of fraction nonconforming in a process. The information that we here show in tables will be useful when p control chart users decide the subgroup size in the p control chart users decide the subgroup size in the p control chart.

  • PDF

소 질병 검출을 위한 혈청학적 검사의 민감도 평가 (Sensitivity analysis of serological tests for detection of disease in cattle)

  • 이상진;문운경;박선일
    • 대한수의학회지
    • /
    • 제50권1호
    • /
    • pp.43-48
    • /
    • 2010
  • Animal disease surveillance system, defined as the continuous investigation of a given population to detect the occurrence of disease or infection for control purposes, has been key roles to assess the health status of an animal population and, more recently, in international trade of animal and animal products with regard to risk assessment. Especially, for a system aiming to determine whether or not a disease is present in a population sensitivity of the system should be maintained high enough not to miss an infected animal. Therefore, when planning the implementation of surveillance system a number of factors that affecting surveillance sensitivity should be taken into account. Of these parameters sample size is of important, and different approaches are used to calculate sample size, usually depending on the objective of surveillance systems. The purpose of this study was to evaluate the sensitivity of the current national serological surveillance programs for four selected bovine diseases assuming a specified sampling plan, to examine factors affecting the probability of detection, and to provide sample sizes required for achieving surveillance goal of detecting at least an infection in a given population. Our results showed that, for example, detecting low level of prevalence (0.2% for bovine tuberculosis) requires selection of all animals per typical Korean cattle farm (n = 17), and thus risk-based target surveillance for high risk groups can be an alternative strategy to increase sensitivity while not increasing overall sampling efforts. The minimum sample size required for detecting at least one positive animal was sharply increased as the disease prevalence is low. More importantly, high reliability of prevalence estimation was expected with increased sampling fraction even when zero-infected animal was identified. The effect of sample size is also discussed in terms of the maximum prevalence when zero-infected animals were identified and on the probability of failure to detect an infection. We suggest that for many serological surveillance systems, diagnostic performance of the testing method, sample size, prevalence, population size, and statistical confidence need to be considered to correctly interpret results of the system.

표지방류 조사를 통한 거제 외포 주변해역 대구(Gadus macrocephalus) 자원량과 어획사망률 추정 (Estimating the Abundance and Fishing Mortality of Pacific Cod Gadus macrocephalus during the Spawning Season in Jinhae Bay, Korea, Using a Mark-Recapture Method)

  • 황강석;최일수;정석근
    • 한국수산과학회지
    • /
    • 제45권5호
    • /
    • pp.499-506
    • /
    • 2012
  • We estimated the population size and fishing mortality of Pacific cod Gadus macrocephalus during the spawning season in waters off Woipo, Geoje Island, Korea, using a mark-recapture method. We marked and released 51 cod>50 cm in total length; six were recaptured by local fishermen during the period from December 15 to 31, 2009. The estimated population size was ca. 180,000 and the fishing mortality of the exploitable cod was 26%. Although we could assume a closed population due to the short survey period, we evaluated the uncertainty in the estimates by applying bootstrap resampling because the sample size was small. The estimated 95% confidence interval was 94,000-568,000 for the population size and 8-49% for fishing mortality. Our study demonstrated that the application of mark-recapture methods and bootstrap resampling can be useful in stock assessment for fisheries management in Korea, but requires a larger sample size, spatially extensive coverage, and sophisticated mark-recapture models based on a refined sampling design for reliable stock assessment and biological reference points in sustainable cod management.