• Title/Summary/Keyword: Population pharmacokinetic

Search Result 43, Processing Time 0.025 seconds

Modified Pharmacokinetic/Pharmacodynamic model for electrically activated silver-titanium implant system

  • Tan, Zhuo;Orndorff, Paul E.;Shirwaiker, Rohan A.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.127-141
    • /
    • 2015
  • Silver-based systems activated by low intensity direct current continue to be investigated as an alternative antimicrobial for infection prophylaxis and treatment. However there has been limited research on the quantitative characterization of the antimicrobial efficacy of such systems. The objective of this study was to develop a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model providing the quantitative relationship between the critical system parameters and the degree of antimicrobial efficacy. First, time-kill curves were experimentally established for a strain of Staphylococcus aureus in a nutrientrich fluid environment over 48 hours. Based on these curves, a modified PK/PD model was developed with two components: a growing silver-susceptible bacterial population and a depreciating bactericidal process. The test of goodness-of-fit showed that the model was robust and had good predictability ($R^2>0.7$). The model demonstrated that the current intensity was positively correlated to the initial killing rate and the bactericidal fatigue rate of the system while the anode surface area was negatively correlated to the fatigue rate. The model also allowed the determination of the effective range of these two parameters within which the system has significant antimicrobial efficacy. In conclusion, the modified PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to the electrically activated silver-titanium implant system. This modeling approach as well as the model itself can also potentially contribute to the development of optimal design strategies for other similar antimicrobial systems.

Monte Carlo Simulation of Plasma Caffeine Concentrations by Using Population Pharmacokinetic Model

  • Han, Sungpil;Cho, Yong-Soon;Yoon, Seok-Kyu;Bae, Kyun-Seop
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.677-687
    • /
    • 2017
  • Caffeine has a long history of human consumption but the consumption of caffeine due to caffeinated energy drinks(CEDs) is rapidly growing. Marketing targets of CED sales are children, adolescents and young adults, possibly caffeine-sensitive groups and its effect for them can be significantly different from healthy adults. Caffeine-related toxicities among these groups are growing in number and a number of countries are recognizing severity of caffeine toxicities. Previous research showed prediction of maximal plasma caffeine concentration profiles after the single CED ingestion and the primary aim of this study is to visually predict plasma caffeine concentration after the single and multiple ingestion of standard servings of CED. Based on the population pharmacokinetic model using Monte Carlo simulation, prediction of caffeine concentration leading to caffeine intoxication in the sensitive groups is quantitatively presented and visualized. This research also broadens the perspective by creating and utilizing diverse open science tools including R package, Edison Science App and Shiny apps.

  • PDF

Estimation Methods for Population Pharmacokinetic Models using Stochastic Sampling Approach (확률적 표본추출 방법을 이용한 집단 약동학 모형의 추정과 검증에 관한 고찰)

  • Kim, Kwang-Hee;Yoon, Jeong-Hwa;Lee, Eun-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.175-188
    • /
    • 2015
  • This study is about estimation methods for the population pharmacokinetic and pharmacodymic model. This is a nonlinear mixed effect model, and it is difficult to find estimates of parameters because of nonlinearity. In this study, we examined theoretical background of various estimation methods provided by NONMEM, which is the most widely used software in the pharmacometrics area. We focused on estimation methods using a stochastic sampling approach - IMP, IMPMAP, SAEM and BAYES. The SAEM method showed the best performance among methods, and IMPMAP and BAYES methods showed slightly less performance than SAEM. The major obstacle to a stochastic sampling approach is the running time to find solution. We propose new approach to find more precise initial values using an ITS method to shorten the running time.

Enviromental Influences on Gentamicin Pharmacokinetics by Using Population Pharmacokinetic Methods (모집단 약물동태학 방법에 의한 겐타마이신 약물동태에 미치는 환경의 영향)

  • Burm, Jin-Pil
    • YAKHAK HOEJI
    • /
    • v.56 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • Enviromental differences in gentamicin pharmacokinetics by using population pharmacokinetic methods were compared with 20 Korean patients and 24 Korean-American appendicitis patients. Two to six blood specimens were collected from all patients at the following times : just before a regularly scheduled infusion and at 0.5 hour after the end of a 0.5 hour infusion. Nonparametric expected maximum (NPEM) algorithm for population modeling was used. The estimated parameters were the elimination rate constant (K), the slope (KS) of the relationship between K versus creatinine clearance ($C_{cr}$), the apparent volume of distribution (V), the slope (VS) of the relationship between V versus weight, gentamicin clearance (CL) and the slope (CS) of the relationship between CL versus $C_{cr}$ and the V. The output includes two marginal probability density function (PDF), means, medians, modes, variance and CV%. The mean K (KS) were $0.402{\pm}0.129\;h^{-1}(0.00486{\pm}0.00197\;[h{\cdot}ml/min/1.73\;m^2]^{-1})$ and $0.411{\pm}0.135\;h^{-1}(0.00475{\pm}0.00180\;[h{\cdot}ml/min/1.73\;m^2]^{-1})$ for Korean and Korean-American populations, respectively. The mean V (VS) were not different at $14.3{\pm}3.6l(0.241{\pm}0.0511l/kg)$ and $15.1{\pm}3.84l(0.239{\pm}0.0492l/kg)$ for Korean and Korean-American populations, respectively (p>0.2). The mean CL (CS) were $5.68{\pm}1.69l/h(0.0714{\pm}0.0222l/kg[h{\cdot}ml/min/1.73\;m^2])$ and $5.70{\pm}1.77l/h(0.0701{\pm}0.0215l/kg[h{\cdot}ml/min/1.73\;m^2])$ for Korean and Korean-American populations, respectively. There were no enviromental differences in gentamicin pharmacokinetics between Korean and Korean-American appendicitis patients.

The Influence of Assay Error Weight on Gentamicin Pharmacokinetics Using the Bayesian and Nonlinear Least Square Regression Analysis in Appendicitis Patients

  • Jin, Pil-Burm
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.598-603
    • /
    • 2005
  • The purpose of this study was to determine the influence of weight with gentamicin assay error on the Bayesian and nonlinear least squares regression analysis in 12 Korean appen dicitis patients. Gentamicin was administered intravenously over 0.5 h every 8 h. Three specimens were collected at 48 h after the first dose from all patients at the following times, just before regularly scheduled infusion, at 0.5 h and 2 h after the end of 0.5 h infusion. Serum gentamicin levels were analyzed by fluorescence polarization immunoassay technique with TDxFLx. The standard deviation (SD) of the assay over its working range had been determined at the serum gentamicin concentrations of 0, 2, 4, 8, 12, and 16 ${\mu}g$/mL in quadruplicate. The polynominal equation of gentamicin assay error was found to be SD (${\mu}g$/mL) = 0.0246-(0.0495C)+ (0.00203C$^2$). There were differences in the influence of weight with gentamicin assay error on pharmacokinetic parameters of gentamicin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynominal equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result would be improved dosage regimens and better, safer care of patients receiving gentamicin.

Development of PK/PD Model for the Antiplatelet and Cardiovascular Effects of Cilostazol using the Results of Bioequivalence Study

  • Kwon, Kwang-Il
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.88-89
    • /
    • 2003
  • In recent days, the bioequivalence(BE) study of domestic drugs on original drug are quite, activated in Korea. This BE study provide not only the bioequivalence of test and reference drug but also produce the population pharmacokinetic(PK) parameters in normal healthy Korean. The BE study can also make it possible to establish a PK/PD model of the drug when the additional pharmacodynamic(PD) data are available. (omitted)

  • PDF

A Simple Dosing Scheme for Intravenous Busulfan Based on Retrospective Population Pharmacokinetic Analysis in Korean Patients

  • Choe, Sang-Min;Kim, Gayeong;Lim, Hyeong-Seok;Cho, Sang-Heon;Ghim, Jong-Lyul;Jung, Jin-Ah;Kim, Un-Jib;Noh, Gyu-Jeong;Bae, Kyun-Seop;Lee, Dong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.273-279
    • /
    • 2012
  • Busulfan is an antineoplastic agent with a narrow therapeutic window. A post-hoc population pharmacokinetic analysis of a prospective randomized trial for comparison of four-times daily versus once-daily intravenous busulfan was carried out to search for predictive factors of intravenous busulfan (iBu) pharmacokinetics (PK). In this study the population PK of iBu was characterized to provide suitable dosing recommendations. Patients were randomized to receive iBu, either as 0.8 mg/kg every 6 h or 3.2 mg/kg daily over 4 days prior to hematopoietic stem cell transplantation. In total, 295 busulfan concentrations were analyzed with NONMEM. Actual body weight and sex were significant covariates affecting the PK of iBu. Sixty patients were included in the study (all Korean; 23 women, 37 men; mean [SD] age, 36.5 [10.9] years; weight, 66.5 [11.3] kg). Population estimates for a typical patient weighing 65 kg were: clearance (CL) 7.6 l/h and volume of distribution (Vd) 32.2 l for men and 29.1 L for women. Inter-individual random variabilities of CL and $V_d$ were 16% and 9%. Based on a CL estimate from the final PK model, a simple dosage scheme to achieve the target $AUC_{0-inf}$ (defined as median AUC0-inf with a once-daily dosage) of 26.18 $mg/l{\cdot}hr$, was proposed: $24.79{\cdot}ABW^{0.5}mg$ q24h, where ABW represents the actual body weight in kilograms. The dosing scheme reduced the unexplained interindividual variabilities of CL and Vd of iBu with ABW being a significant covariate affecting clearance of iBU. We propose a new simple dosing scheme for iBu based only on ABW.

Pharmacodynamic principles and target concentration intervention

  • Holford, Nick
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.150-154
    • /
    • 2018
  • This tutorial reviews the principles of dose individualisation with an emphasis on target concentration intervention (TCI). Once a target effect is chosen then pharmacodynamics can predict the target concentration and pharmacokinetics can predict the target dose to achieve the required response. Dose individualisation can be considered at three levels: population, group and individual. Population dosing, also known as fixed dosing or "one size fits all" is often used but is poor clinical pharmacology; group dosing uses patient features such as weight, organ function and comedication to adjust the dose for a typical patient; individual dosing uses observations of patient response to inform about pharmacokinetic and pharmacodynamics in the individual and use these individual differences to individualise dose.