• Title/Summary/Keyword: Population genetic structure

Search Result 460, Processing Time 0.028 seconds

Genetic Diversity and Population Structure of Liriope platyphylla (Liliaceae) in Korea (한국내 맥문동의 유전적 다양성과 집단 구조)

  • Huh, Hong-Wook;Choi, Joo-Soo;Lee, Bok-Kyu;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.328-333
    • /
    • 2007
  • Genetic diversity and population structure of eleven Liriope platyphylla (Liliaceae) populations in Korea were determined using genetic variation at 20 allozyme loci. The percent of polymorphic loci within the enzymes was 55.9%. Genetic diversity at the species level and at the population level was high(Hes = 0.178; Hep = 0.168, respectively), whereas the extent of the population divergence was relatively low ($G_{ST}$ = 0.064). $F_{IS}$, a measure of the deviation from random mating within the 11 populations, was 0.311. Total genetic diversity values ($H_T$) varied between 0.0 and 0.535, giving an average over all polymorphic loci of 0.323. The interlocus variation in within population genetic diversity ($H_S$) was high (0.305). An indirect estimate of the number of migrants per generation (Nm = 3.66) indicates that gene flow is high among Korean populations of the species. In addition, analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and at some loci. Mean genetic identity between populations was 0.988. It is highly probable that directional toward genetic uniformity in a relatively the homogenous habitat is thought to be operated among Korean populations of L. platyphylla.

Genetic Variation and Population Structure of the Slender Bitterling Acheilognathus lanceolatus of Korea and Japan as Assessed by Amplified Fragment Length Polymorphism (AFLP) Analysis (AFLP 분석에 의한 한국과 일본의 납자루 Acheilognathus lanceolatus의 유전 변이와 집단 구조)

  • Yun, Young-Eun;Kim, Chi-Hong;Kim, Keun-Yong;Ishinabe, Toshihiro;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.22 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Genetic variation and population structure of the slender bitterling Acheilognathus lanceolatus of Korea (the Han, Geum, Dongjin, Seomjin and Nakdong Rivers) and Japan (the Katsura River) were assessed by amplified fragment length polymorphism (AFLP) analysis. Five combinations of selective primers generated 345~374 DNA fragments, of which 55~131 were polymorphic. The Nakdong River population had the highest genetic diversity and the Han River population had the lowest genetic diversity. Dendrogram based on the distance matrix revealed that individuals from each population consistently clustered together and bifurcated into two distinct clades (or population groups) composed of the Han, Geum, Dongjin and Seomjin River populations and of the Nakdong and Katsura River populations, supported with high bootstrap values. The pairwise genetic differentiation ($F_{ST}$) estimates showed that the six populations were genetically well differentiated (P<0.01). The analysis of molecular variance (AMOVA) after partitioning the six populations into two population groups revealed very strong biogeographic structuring between them with 25.49% of total variance (P<0.01). Taken together, the AFLP markers clearly divided six A. lanceolatus populations into two population groups.

Genetic Diversity and Population Structure of Korean Soybean Landrace [Glycine max(L.) Merr.]

  • Cho, Gyu-Taek;Lee, Jeong-Ran;Moon, Jung-Kyung;Yoon, Mun-Sup;Baek, Hyung-Jin;Kang, Jung-Hoon;Kim, Tae-San;Paek, Nam-Chon
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • Two hundred and sixty Korean soybean landrace accessions were analyzed for polymorphism at 92 simple sequence repeat(SSR) loci. The 995 identified alleles served as raw data for estimating genetic diversity and population structure. The number of alleles at a locus ranged from three to 27 with a mean of 10.4 alleles per locus. $F_{ST}$ values estimated by analysis of molecular variance(AMOVA) using SSR data set were 0.018, 0.027, and 0.016 for usage, collection site and maturity groups, respectively, indicating little genetic differentiation. The model-based clustering analysis placed the accessions into three clusters(K=3) with 0.0503 of $F_{ST}$, indicating moderate genetic differentiation. Duncan's Multiple Range Test at K = 3 on the basis of 18 quantitative traits revealed that one cluster was mainly differentiated from the other two clusters by seed related traits and the other two clusters were differentiated from each other by biochemical traits. Genetic structure of Korean soybean landraces was differentiated by model-based clustering and supported by their phenotypic traits in part. This preliminary study could be the first step towards more efficient germplasm management and utilization of soybean landraces and helpful in association studies between genotypic and phenotypic traits in Korean soybean landraces.

  • PDF

Genetic diversity and population structure of mongolian wheat based on SSR markers

  • Ya, Narantsetseg;Raveendar, Sebastin;Bayarsukh, N;Ya, Myagmarsuren;Lee, Jung-Ro;Lee, Kyung-Jun;Shin, Myoung-Jae;Cho, Yang-Hee;Ma, Kyung-Ho;Lee, Gi-An
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.82-82
    • /
    • 2017
  • The production of spring wheat, the major crop in Mongolia, is accounting for 98% of the cultivated area. Collection, conservation and utilization of wheat germplasm resources play an important role in wheat breeding and production in Mongolia. Understanding genetic variability in the existing genebank accessions is important for collection and conservation of wheat germplasms. To determine the genetic diversity and population structure among a representative collection of Mongolian local wheat cultivars and lines, 200 wheat accessions were analyzed with 15 SSR markers distributed throughout the wheat genome. A total of 85 alleles were detected, with 3 to 5 alleles per locus and a mean genetic diversity value of 5.66. The average genetic diversity index was 0.68, with values ranging from 0.37 to 0.80. The 200 Mongolian wheat accessions were divided into two subgroups based on STRUCTURE, un-rooted NJ cluster and principal coordinate analyses. The results from this study will provide important information for future wheat germplasm conservation and improvement programs with Mongolian genebank.

  • PDF

Genetic Traceability of Black Pig Meats Using Microsatellite Markers

  • Oh, Jae-Don;Song, Ki-Duk;Seo, Joo-Hee;Kim, Duk-Kyung;Kim, Sung-Hoon;Seo, Kang-Seok;Lim, Hyun-Tae;Lee, Jae-Bong;Park, Hwa-Chun;Ryu, Youn-Chul;Kang, Min-Soo;Cho, Seoae;Kim, Eui-Soo;Choe, Ho-Sung;Kong, Hong-Sik;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.926-931
    • /
    • 2014
  • Pork from Jeju black pig (population J) and Berkshire (population B) has a unique market share in Korea because of their high meat quality. Due to the high demand of this pork, traceability of the pork to its origin is becoming an important part of the consumer demand. To examine the feasibility of such a system, we aim to provide basic genetic information of the two black pig populations and assess the possibility of genetically distinguishing between the two breeds. Muscle samples were collected from slaughter houses in Jeju Island and Namwon, Chonbuk province, Korea, for populations J and B, respectively. In total 800 Jeju black pigs and 351 Berkshires were genotyped at thirteen microsatellite (MS) markers. Analyses on the genetic diversity of the two populations were carried out in the programs MS toolkit and FSTAT. The population structure of the two breeds was determined by a Bayesian clustering method implemented in structure and by a phylogenetic analysis in Phylip. Population J exhibited higher mean number of alleles, expected heterozygosity and observed heterozygosity value, and polymorphism information content, compared to population B. The $F_{IS}$ values of population J and population B were 0.03 and -0.005, respectively, indicating that little or no inbreeding has occurred. In addition, genetic structure analysis revealed the possibility of gene flow from population B to population J. The expected probability of identify value of the 13 MS markers was $9.87{\times}10^{-14}$ in population J, $3.17{\times}10^{-9}$ in population B, and $1.03{\times}10^{-12}$ in the two populations. The results of this study are useful in distinguishing between the two black pig breeds and can be used as a foundation for further development of DNA markers.

Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping

  • Tao Zhang;Zhiying Wang;Yaming Li;Bohan Zhou;Yifan Liu;Jinquan Li;Ruijun Wang;Qi Lv;Chun Li;Yanjun Zhang;Rui Su
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1168-1176
    • /
    • 2024
  • Objective: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future. Methods: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (AEBS), Erlangshan (ELS), and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations. Results: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw single nucleotide polymorphisms (SNPs) obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13× to 46.18×, with an average of 28.5×. In the AEBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations. Conclusion: The Inner Mongolia cashmere goat (AEBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future.

Population Genetic Structure and Marker - Trait Associations in a Collection of Traditional Rice (Oryza sativa L.) from Northern Vietnam

  • Ngoc Ha Luong;Le-Hung Linh;Kyu-Chan Shim;Cheryl Adeva;Hyun-Sook Lee;Sang-Nag Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.04a
    • /
    • pp.110-110
    • /
    • 2022
  • Rice is the world's most important food crop and a major source of nutrition for about two thirds of populations. Northern Vietnam is one of the most important centers of genetic diversity for cultivated rice. In this study, we determined the genetic diversity and population structure of 79 rice landraces collected from northern Vietnam and 19 rice accessions collected from different countries. In total, 98 rice accessions could be differentiated into japonica and indica with moderate genetic diversity and a polymorphism information content of 0.382. We also detected subspecies-specific markers to classify rice (Oryza sativa L.) into indica and japonica. Additionally, we detected five marker-trait associations and rare alleles that can be applied in future breeding programs. Most interestingly, analysis of molecular variance (AMOVA) found genetic differentiation was related to geographical regions with an overall PhiPT (analog of fixation index FST) value of 0.130. More emphasis was given to provide signatures and infer explanations about the role of geographical isolation and environmental heterogeneity in genetic differentiation among regions in landraces from northern Vietnam. Our results suggest that rice landraces in northern Vietnam have a dynamic genetic system that can create different levels of genetic differentiation among regions, but also maintain a balanced genetic diversity between regions.

  • PDF

Parallel Genetic Algorithm for Structural Optimization on a Cluster of Personal Computers (구조최적화를 위한 병렬유전자 알고리즘)

  • 이준호;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.40-47
    • /
    • 2000
  • One of the drawbacks of GA-based structural optimization is that the fitness evaluation of a population of hundreds of individuals requiring hundreds of structural analyses at each CA generation is computational too expensive. Therefore, a parallel genetic algorithm is developed for structural optimization on a cluster of personal computers in this paper. Based on the parallel genetic algorithm, a population at every generation is partitioned into a number of sub-populations equal to the number of slave computers. Parallelism is exploited at sub-population level by allocationg each sub-population to a slave computer. Thus, fitness of a population at each generation can be concurrently evaluated on a cluster of personal computers. For implementation of the algorithm a virtual distributed computing system in a collection of personal computers connected via a 100 Mb/s Ethernet LAN. The algorithm is applied to the minimum weight design of a steel structure. The results show that the computational time requied for serial GA-based structural optimization process is drastically reduced.

  • PDF

Genetic Variation and Structure of the Relict Populations of Korean Arborvitae (Thuja koraiensis Nakai) in South Korea, Employing I-SSR Markers (I-SSR 표지자에 의한 눈측백나무 남한 잔존집단의 유전변이와 구조)

  • Yang, Byeong-Hoon;Song, Jeong-Ho;Lee, Jung-Joo;Hur, Seong-Doo;Hong, Yong-Pyo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • We investigated the genetic variation and structure in Korean Arborvitae (Thuja koraiensis Nak.), by 29 examining I-SSR polymorphic loci in 84 individuals distributed among four natural populations in Korea. The level of population genetic diversity ($A_e$=1.44, P=72.42, $H_e$=0.258, S.I.=0.385) was similar to or slightly higher than that of plants with similar ecological traits and life history (Cupressaceae). Most genetic diversity was allocated among individuals within populations (${\Phi}_{ST}$=0.13). The UPGMA dendrogram based on genetic distance failed in showing decisive geographic relationship. The Mt. Bangtae population had the lowest level of genetic diversity and was the most distinctive from the other populations. Mt. Jang population which is possessed of the highest level of genetic variation and Mt. Bangtae population which is consisted of heterogeneous was considered to be a prime candidate for the conservation studies.