• 제목/요약/키워드: Population based exposure

검색결과 195건 처리시간 0.025초

지리정보시스템(GIS) 및 존재인구를 이용한 초미세먼지(PM2.5) 노출평가 (Existing Population Exposure Assessment Using PM2.5 Concentration and the Geographic Information System)

  • 우재민;민기홍;김동준;조만수;성경화;원정일;이채관;신지훈;양원호
    • 한국환경보건학회지
    • /
    • 제48권6호
    • /
    • pp.298-305
    • /
    • 2022
  • Background: The concentration of air pollutants as measured by the Air Quality Monitoring System (AQMS) is not an accurate population exposure level since actual human activities and temporal and spatial variability need to be considered. Therefore, to increase the accuracy of exposure assessment, the population should be considered. However, it is difficult to obtain population data due to limitations such as personal information. Objectives: The existing population defined in this study is the number of people in each region's grid. The purpose is to provide a methodology for evaluating exposure to PM2.5 through existing population data provided by the National Geographic Information Institute. Methods: The selected study period was from October 26 to October 28, 2021. Using PM2.5 concentration data measured at the Sensor-based Air Monitoring Station (SAMS) installed in Guro-gu and Wonju-si, the concentration for each grid was estimated by applying inverse distance weights through QGIS version 3.22. Considering the existing population, population-weighted average concentration (PWAC) was calculated and the exposure level of the population was compared by region. Results: The outdoor PM2.5 concentration as measured through the SAMS was high in Wonju-si on all three days. Wonju-si showed an average 22% higher PWAC than Guro-gu. As a result of comparing the PWAC and outdoor PM2.5 concentration by region, the PWAC in Guro-gu was 1~2% higher than the observed value, but it was almost the same. Conversely, observations of Wonju-si were 10.1%, 11.3%, and 8.2% higher than PWAC. Conclusions: It is expected that the Geographic Information System (GIS) method and the existing population will be used to evaluate the exposure level of a population with a narrow activity radius in further research. In addition, based on this study, it is judged that research on exposure to environmental pollutants and risk assessment methods should be expanded.

개인 노출량 조사를 통한 한국인의 극저주파 자기장 노출 수준 (Estimation of ELF-MF Exposure Levels in the Korean Population through 24-Hour Personal Exposure)

  • 정준식;김근영;홍승철;조용성;김윤신
    • 한국환경보건학회지
    • /
    • 제38권1호
    • /
    • pp.18-30
    • /
    • 2012
  • Objectives: The purpose of this study was to estimate the exposure level to extremely low frequency-magnetic fields (ELF-MF) among a selected Korean population using 24-hour personal exposure measurement. Methods: Participants were randomly selected for the measurement of MF exposure under the assumption that the subjects are representative of the overall Korean population. Levels of personal exposure to MF were measured according to the subject's daily activities. Results: The 24-hour time-weighted average (TWA) of 250 participants was $1.56{\pm}4.56$ mG (GM, GSD: 0.79, 2.46 mG). Personal exposure levels for females were higher than for males. The highest personal exposure level was shown in the age group between 20-60 years old. Personal exposure levels according to job category were higher for the non-occupational group than for the occupational group. Conclusions: Our results showed MF exposure exceeding 2 mG per day among 11.3% of the Korean population, indicating a somewhat higher percentage compared to the EMF RAPID Program's results for the U.S population.

Mesothelioma in Sweden: Dose-Response Analysis for Exposure to 29 Potential Occupational Carcinogenic Agents

  • Plato, Nils;Martinsen, Jan I.;Kjaerheim, Kristina;Kyyronen, Pentti;Sparen, Par;Weiderpass, Elisabete
    • Safety and Health at Work
    • /
    • 제9권3호
    • /
    • pp.290-295
    • /
    • 2018
  • Background: There is little information on the dose-response relationship between exposure to occupational carcinogenic agents and mesothelioma. This study aimed to investigate this association as well as the existence of agents other than asbestos that might cause mesothelioma. Methods: The Swedish component of the Nordic Occupational Cancer (NOCCA) study consists of 6.78 million individuals with detailed information on occupation. Mesothelioma diagnoses recorded in 1961-2009 were identified through linkage to the Swedish Cancer Registry. We determined cumulative exposure, time of first exposure, and maximum exposure intensity by linking data on occupation to the Swedish NOCCA job-exposure matrix, which includes 29 carcinogenic agents and corresponding exposure for 283 occupations. To assess the risk of mesothelioma, we used conditional logistic regression models to estimate hazard ratios and 95% confidence intervals. Results: 2,757 mesothelioma cases were identified in males, including 1,416 who were exposed to asbestos. Univariate analyses showed not only a significant excess risk for maximum exposure intensity, with a hazard ratio of 4.81 at exposure levels 1.25-2.0 fb/ml but also a clear dose-response effect for cumulative exposure with a 30-, 40-, and 50-year latency time. No convincing excess risk was revealed for any of the other carcinogenic agents included in the Swedish NOCCA job-exposure matrix. Conclusion: When considering asbestos exposure, past exposure, even for short periods, might be enough to cause mesothelioma of the pleura later in life.

주거환경 및 개인 생활습관에 따른 화학물질 노출수준 차이 - 국민환경보건기초조사 (Differences of Chemical Exposure Levels according to Residential and Personal Life-style Characteristics of Korean adult population - from Korean National Environmental Health Survey)

  • 황문영;홍수연;권영민;조혜정;박충희
    • 한국환경보건학회지
    • /
    • 제45권2호
    • /
    • pp.142-153
    • /
    • 2019
  • Objectives: The aim of this study was to determine environmental chemical exposure related to residential and personal lifestyle characteristics in the adult Korean population. The observations of this study can provide information useful for developing reduction approaches for exposure to chemicals among the general adult population. Methods: The second stage of the Korean National Environmental Health Survey (KoNHES) was conducted from 2012 to 2014, with 6,478 persons participating. Using the results of the survey, the relationship between exposure levels of heavy metals and organic chemicals and exposure factors, e.g. residential and personal lifestyle characteristics, were analyzed. Results: The exposure levels of VOCs and PAHs were significantly lower in participants living at a distance of more than 100 m from roads versus living closer to roads. Home ventilation lowered VOC and PAH exposure but did not lower chemical exposure from household products. Use of public transportation showed lower exposure to heavy metals, VOCs, and PAHs. Current smoker was significantly higher for levels of heavy metals, VOCs, and PAHs, and the exposure trend was similar for current drinkers. Physical activity was related with higher exposure to phthalates and environmental phenols. Conclusion: Our observations based on a nationally representative population for Korea show that exposure to chemicals varies by residential and personal lifestyle, and this should be considered for developing appropriate mitigation measures and policies. Given the health concerns surrounding environmental chemicals, it is necessary to develop comprehensive measures to reduce chemical exposure.

인구 유동에 따른 서울시 대기 중 초미세먼지 농도 변화 요인 분석 및 노출평가 (Analysis and Exposure Assessment of Factors That Affect the Concentration of Ambient PM2.5 in Seoul Based on Population Movement)

  • 우재민;신지훈;민기홍;김동준;성경화;조만수;우병열;양원호
    • 한국환경보건학회지
    • /
    • 제50권1호
    • /
    • pp.6-15
    • /
    • 2024
  • Background: People's activities have been restricted due to the COVID-19 pandemic. These changes in activity patterns may lead to a decrease in fine particulate matter (PM2.5) concentrations. Additionally, the level of population exposure to PM2.5 may be changed. Objectives: This study aimed to analyze the impact of population movement and meteorological factors on the distribution of PM2.5 concentrations before and after the outbreak of COVID-19. Methods: The study area was Guro-gu in Seoul. The research period was selected as January to March 2020, a period of significant population movement changes caused by COVID-19. The evaluation of the dynamic population was conducted by calculating the absolute difference in population numbers between consecutive hours and comparing them to determine the daily average. Ambient PM2.5 concentrations were estimated for each grid using ordinary kriging in Python. For the population exposure assessment, the population-weighted average concentration was calculated by determining the indoor to outdoor population for each grid and applying the indoor to outdoor ratio to the ambient PM2.5 concentration. To assess the factors influencing changes in the ambient PM2.5 concentration, a statistical analysis was conducted, incorporating population mobility and meteorological factors. Results: Through statistical analysis, the correlation between ambient PM2.5 concentration and population movement was positive on both weekends and weekdays (r=0.71, r=0.266). The results confirmed that most of the relationships were positive, suggesting that a decrease in human activity can lead to a decrease in PM2.5 concentrations. In addition, when population-weighted concentration averages were calculated and the exposure level of the population group was compared before and after the COVID-19 outbreak, the proportion of people exceeding the air quality standard decreased by approximately 15.5%. Conclusions: Human activities can impact ambient concentrations of PM2.5, potentially altering the levels of PM2.5 exposure in the population.

Potential Work-related Exposure to SARS-CoV-2 by Standard Occupational Grouping Based on Pre-lockdown Working Conditions in France

  • Narges Ghoroubi;Emilie Counil;Myriam Khlat
    • Safety and Health at Work
    • /
    • 제14권4호
    • /
    • pp.488-491
    • /
    • 2023
  • This study aims to ascertain occupations potentially at greatest risk of exposure to SARS-CoV-2 based on pre-lockdown working conditions in France. We combined two French population-based surveys documenting workplace exposures to infectious agents, face-to-face contact with the public, and working with colleagues just before the pandemic. Then, for each 87-level standard French occupational grouping, we estimated the number and percentage of the French working population reporting these occupational exposure factors, by gender, using survey weights. As much as 40% (11 million) of all workers reported at least two exposure factors. Most of the workers concerned were in the healthcare sector. However, army/police officers, firefighters, hairdressers, teachers, cultural/sports professionals, and some manual workers were also exposed. Women were overrepresented in certain occupations with potentially higher risks of exposure such as home caregivers, childminders, and hairdressers. Our gender-stratified matrix can be used to assign prelockdown work-related exposures to cohorts implemented during the pandemic.

납의 다경로 노출에 의한 건강위해성평가 : 우리 나라 일부 지역 성인들을 대상으로 (Health Risk Assessment of Lead Exposure through Multi-pathways in Korea)

  • 정용;황만식;양지연;조성준
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권4호
    • /
    • pp.203-216
    • /
    • 1999
  • This paper describes a set of multi-pathway models for estimating health risk to lead. The models link concentrations of an environmental contaminant (lead) in air, water and food to human exposure through inhalation, ingestion, and dietary routes. Exposure is used as the foundation for predicting risk of health detriment within the population. The process of estimating exposure using often limited data and extrapolating to a large diverse population requires many assumption, inferences, and simplification. This paper is divided into four section. The first section provides lead contaminant levels on obtaining environmental concentration of air, tap water, and foods. The second section provides a discussion of exposure parameters and uncertainty associated predicting human health risk of contaminants. The third and fourth section illustrate lifetime average daily exposure (LADE) and excess cancer risk (ECR) based on exposure parameters. The relationship between concentration of lead in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). The calculation of LADE and ECR is carried out using Monte-Carlo simulation with probability density function of exposure parameters. Examination of the result reveals that, for lead exposure, ingestion (food) is the dominant route of exposure rather than inhalation (air), and ingestion (tap eater).

  • PDF

General Factors of the Korean Exposure Factors Handbook

  • Jang, Jae-Yeon;Kim, So-Yeon;Kim, Sun-Ja;Lee, Kyung-Eun;Cheong, Hae-Kwan;Kim, Eun-Hye;Choi, Kyung-Ho;Kim, Young-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • 제47권1호
    • /
    • pp.7-17
    • /
    • 2014
  • Risk assessment considers the situations and characteristics of the exposure environment and host. Various physiological variables of the human body reflects the characteristics of the population that can directly influence risk exposure. Therefore, identification of exposure factors based on the Korean population is required for appropriate risk assessment. It is expected that a handbook about general exposure factors will be used by professionals in many fields as well as the risk assessors of the health department. The process of developing the exposure factors handbook for the Korean population will be introduced in this article, with a specific focus on the general exposure factors including life expectancy, body weight, surface area, inhalation rates, amount of water intake, and soil ingestion targeting the Korean population. The researchers used national databases including the Life Table and the 2005 Time Use Survey from the National Statistical Office. The anthropometric study of size in Korea used the resources provided by the Korean Agency for Technology and Standards. In addition, direct measurement and questionnaire surveys of representative samples were performed to calculate the inhalation rate, drinking water intake, and soil ingestion.

Exposure of the Population in the United States to Ionizing Radiation

  • Carter Melvin W.;Oliver Robert W.
    • Journal of Radiation Protection and Research
    • /
    • 제12권2호
    • /
    • pp.37-50
    • /
    • 1987
  • The exposure of the population in the United States to ionizing radiation has recently been evaluated by the National Council on Radiation Protection and Measurements (NCRP). This was done by constituting six organizational groups to address various phases of the work and the results of this work are summarized in this article. The article is based on the report, by the same title, which is scheduled for publication by the NCRP in September, 1987. The six organizational groups are titled Radiation Exposure from Consumer Products, Natural Background Radiation, Radiation Associated with Medical Examinations, Radiation Received by Radiation Employees, Public Exposure from Nuclear Power, and Exposure from Miscellaneous Environmental Sources. These titles are descriptive of the subject areas covered by each of these separate groups. The data evaluated are for the years 1977-1984 with the majority of the data being for the period 1980-1982. Summary information is presented and discussed for the number of people exposed to given sources, the effective dose equivalent, the average effective dose equivalent to the U.S. population, and the genetically significant dose equivalent. The average annual effective dose equivalent from all sources to the U.S. population is approximately 3.6 mSv (360 mrem). Exposures to natural sources make the largest contribution to this total. Radon and radon decay products contribute 2.0 mSv (200 mrem) whereas the other naturally occurring radionuclides contribute 1.0 mSv (100 mrem). Among man-made or enhanced sources, medical exposures make the largest additional contributions, namely 0.39 mSv (39 mrem) for diagnosis and 0.14 mSv (14 mrem) for nuclear medicine. It was not possible to evaluate exposures for therapy. Most of the other sources of population exposure, including nuclear power and consumer products, are minor. A possible exception would be the use of tobacco products. These exposures are discussed in relation to a negligible individual risk level of $10{\mu}Sv/y$ (1 mrem/y). The NCRP considers exposures below the negligible individual risk level as trivial and as such should be dismissed.

  • PDF

유동인구 밀집지역 인근의 도로구간별 배출량 산정 및 보행자 노출 강도 평가 (Estimation of Link-Based Traffic-Related Air Pollutant Emissions and the Exposure Intensity on Pedestrian Near Busy Streets)

  • 이상은;신명환;이석주;홍다희;장동익;길지훈;정택호;이태우;홍유덕
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.81-89
    • /
    • 2018
  • The objective of this study is to estimate the level of exposure of traffic-related air pollutants (TRAPs) on the pedestrians in Seoul area. The road network's link-based pollutant emission was calculated by using a set of mobile source emission factor package and associated activity information. The population information, which is the number of pedestrian, was analyzed in conjunction with the link-based traffic emissions in order to quantify exposure level by selected 23 spots. We proposed the Exposure Intensity, which is defined by the amount of traffic emission and the population, to quantify the probability of exposure of pedestrian. Link-based traffic NOx and PM emissions vary by up to four times depending on the location of each spot. The Hot-spots is estimated to be around 1.8 times higher Exposure Intensity than the average of the 23 selected spots. The information of Exposure Intensity of each spot allows us to develop localized policies for air quality and health. Even in the same area, the Exposure Intensity over time also shows a large fluctuation, which gives suggestions for establishing site-specific counter-measures.