• Title/Summary/Keyword: Pool water

Search Result 539, Processing Time 0.033 seconds

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE

  • Seong, Seung-Hwan;Lee, Tae-Ho;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.785-796
    • /
    • 2009
  • A KALIMER-600 concept which is a type of sodium-cooled fast reactor, has been developed at KAERI. It uses sodium as a primary coolant and is a pool-type reactor to enhance safety. Also, a supercritical carbon dioxide ($CO_2$) Brayton cycle is considered as an alternative to an energy conversion system to eliminate the sodium water reaction and to improve efficiency. In this study, a simplified model for analyzing the thermodynamic performance of the KALIMER-600 coupled with a supercritical $CO_2$ Brayton cycle was developed. To develop the analysis model, a commercial modular modeling system (MMS) was adopted as a base engine, which was developed by nHance Technology in USA. It has a convenient graphical user interface and many component modules to model the plant. A new user library for thermodynamic properties of sodium and supercritical $CO_2$ was developed and attached to the MMS. In addition, some component modules in the MMS were modified to be appropriate for analysis of the KALIMER-600 coupled with the supercritical $CO_2$ cycle. Then, a simplified performance analysis code was developed by modeling the KALIMER-600 plant with the modified MMS. After evaluating the developed code with each component data and a steady state of the plant, a simple power reduction and recovery event was evaluated. The results showed an achievable capability for a performance analysis code. The developed code will be used to develop the operational strategy and some control logics for the operation of the KALIMER-600 with a supercritical $CO_2$ Brayton cycle after further studies of analyzing various operational events.

CHARACTERISTICS OF SELF-LEVELING BEHAVIOR OF DEBRIS BEDS IN A SERIES OF EXPERIMENTS

  • Cheng, Songbai;Yamano, Hidemasa;Suzuki, TYohru;Tobita, Yoshiharu;Nakamura, Yuya;Zhang, Bin;Matsumoto, Tatsuya;Morita, Koji
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.323-334
    • /
    • 2013
  • During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.

Groping the Environmental Education Method Based on the Ecological Principles (생태학의 원리에 기초한 환경교육 방법의 모색)

  • 이창석
    • Hwankyungkyoyuk
    • /
    • v.15 no.1
    • /
    • pp.137-147
    • /
    • 2002
  • The progress of environmental science and technology in the developed countries has been rapid in recent years. Particularly remarkable has been the advancement of various pollutant control measures, which have brought the pollution of inorganic factors such as air and water under control. In contrast, diversity of the ecosphere, of which man is a part, is being steadily Impoverished and the biological community is getting unvaryingly uniform. These phenomena were brought about by the expansion of artificial environment such as new industrial complexes, transportation facilities and urban development. Man has constructed uniform and artificial environment, believing in the premise of confrontation with nature, to such a scale that the natural environment and biological community have lost their balance. This will increasingly endanger the soundness of the biotic environment of nature, which constitutes the potential foundation both for the survival environment of man as biological entity and for the development of human civilization. In order to guarantee the soundness of man's body, intelligence and sensitivity as wholesome gene Pool on the earth and for the future of man, primarily important environmental education is the understanding of how man can everlasting exist in and with the survival environment. In view of this reality, it is vitally important to create ecologically diverse and well-balanced environment with living materials, i.e., vegetation in order to secure lasting survival environment for man. This task is urgently required in highly artificial environment where non-biological materials have forced the impoverishment of the biological community. Therefore, environmental education for the future should not be totally oriented to technology as that in the past nor it is limited to the medical aspect where well-being of human is the sole object of concern. That is to say, environmental education for the future should be one that provides knowledge that human can understand his place based on the ecological concept and thereby make him to have ethical consciousness that he can control his behavior within the reasonable level for ecological niche who he is located.

  • PDF

An investigation on the improvement of neutron radiography system of the Tehran research reactor by using MCNPX simulations

  • Amini, Moharram;Zamzamian, Seyed Mehrdad;Fadaei, Amir Hossein;Gharib, Morteza;Feghhi, Seyed Amir Hosein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3413-3420
    • /
    • 2021
  • Applying the available neutron flux for medical and industrial purposes is the most important application of research reactors. The neutron radiography system is used for non-destructive testing (NDT) of materials so that it is one of the main applications of nuclear research reactors. One of these research reactors is the 5 MW pool-type light water research reactor of Tehran (TRR). This work aims to investigate on materials and location of the beam tube (BT) of the TRR radiography system to improve the index parameters of BT. Our results showed that a through-type BT with 20 cm thick carbon neutron filter, 1.2 cm and 9.4 cm of the diameter of inlet (D1) and output (D2) BT, respectively gives thermal neutron flux almost 25.7, 5.6 and 1.1 times greater than the former design of the TRR (with D1 = 1.8 cm and D1 = 9.4 cm), previous design of the TRR with D1 = 3 cm and D1 = 9.4 cm, and another design with D1 = 5 cm and D1 = 9.4 cm, respectively. Therefore, the design proposed in this paper could be a better alternative to the current BT of the TRR.

Ultrashort Echo Time MRI (UTE-MRI) Quantifications of Cortical Bone Varied Significantly at Body Temperature Compared with Room Temperature

  • Jerban, Saeed;Szeverenyi, Nikolaus;Ma, Yajun;Guo, Tan;Namiranian, Behnam;To, Sarah;Jang, Hyungseok;Chang, Eric Y.;Du, Jiang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • Purpose: To investigate the temperature-based differences of cortical bone ultrashort echo time MRI (UTE-MRI) biomarkers between body and room temperatures. Investigations of ex vivo UTE-MRI techniques were performed mostly at room temperature however, it is noted that the MRI properties of cortical bone may differ in vivo due to the higher temperature which exists as a condition in the live body. Materials and Methods: Cortical bone specimens from fourteen donors ($63{\pm}21$ years old, 6 females and 8 males) were scanned on a 3T clinical scanner at body and room temperatures to perform T1, $T2^*$, inversion recovery UTE (IR-UTE) $T2^*$ measurements, and two-pool magnetization transfer (MT) modeling. Results: Single-component $T2^*$, $IR-T2^*$, short and long component $T2^*s$ from bi-component analysis, and T1 showed significantly higher values while the noted macromolecular fraction (MMF) from MT modeling showed significantly lower values at body temperature, as compared with room temperature. However, it is noted that the short component fraction (Frac1) showed higher values at body temperature. Conclusion: This study highlights the need for careful consideration of the temperature effects on MRI measurements, before extending a conclusion from ex vivo studies on cortical bone specimens to clinical in vivo studies. It is noted that the increased relaxation times at higher temperature was most likely due to an increased molecular motion. The T1 increase for the studied human bone specimens was noted as being significantly higher than the previously reported values for bovine cortical bone. The prevailing discipline notes that the increased relaxation times of the bound water likely resulted in a lower signal loss during data acquisition, which led to the incidence of a higher Frac1 at body temperature.

Analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS using the Serpent Monte Carlo code and the ENDF/B-VIII.0 nuclear data library

  • Hartanto, Donny;Liem, Peng Hong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2725-2732
    • /
    • 2020
  • This paper presents the neutronics benchmark analysis of the first core of the Indonesian multipurpose research reactor RSG-GAS (Reaktor Serba Guna G.A. Siwabessy) calculated by the Serpent Monte Carlo code and the newly released ENDF/B-VIII.0 nuclear data library. RSG-GAS is a 30 MWth pool-type material testing research reactor loaded with plate-type low-enriched uranium fuel using light water as a coolant and moderator and beryllium as a reflector. Two groups of critical benchmark problems are derived on the basis of the criticality and control rod calibration experiments of the first core of RSG-GAS. The calculated results, such as the neutron effective multiplication factor (k) value and the control rod worth are compared with the experimental data. Moreover, additional calculated results, including the neutron spectra in the core, fission rate distribution, burnup calculation, sensitivity coefficients, and kinetics parameters of the first core will be compared with the previous nuclear data libraries (interlibrary comparison) such as ENDF/B-VII.1 and JENDL-4.0. The C/E values of ENDF/B-VIII.0 tend to be slightly higher compared with other nuclear data libraries. Furthermore, the neutron reaction cross-sections of 16O, 9Be, 235U, 238U, and S(𝛼,𝛽) of 1H in H2O from ENDF/B-VIII.0 have substantial updates; hence, the k sensitivities against these cross-section changes are relatively higher than other isotopes in RSG-GAS. Other important neutronics parameters such as kinetics parameters, control rod worth, and fission rate distribution are similar and consistent among the nuclear data libraries.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Environmental effects from Natural Waters Contaminated with Acid Mine Drainage in the Abandoned Backun Mine Area (백운 폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향)

  • 전서령;정재일;김대현
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • We examined the contamination of stream water and stream sediments by heavy metal elements with respect to distance from the abandoned Backun Au-Ag-Cu mine. High contents of heavy metals (Pb, Zn, Cu, Cd, Mn, and Fe) and aluminum in the waters connected with mining and associated deposits (dumps, tailings) reduce water quality. In the mining area, Ca and SO$_4$ are predominant cation and anion. The mining water is Ca-SO$_4$ type and is enriched in heavy metals resulted from the weathering of sulfide minerals. This mine drainage water is weakly acid or neutral (pH; 6.5-7.1) because of neutralizing effect by other alkali and alkaline earth elements. The effluent from the mine adit is also weakly acid or neutral, and contains elevated concentrations of most elements due to reactions with ore and gangue minerals in the deposit. The concentration of ions in the Backun mining water is high in the mine adit drainage water and steeply decreased award to down stream. Buffering process can be reasonably considered as a partial natural control of pollution, since the ion concentration becomes lower and the pH value becomes neutralized. In order to evaluate mobility and bioavailability of metals, sequential extraction was used for stream sediments into five operationally defined groups: exchangeable, bound to carbonates, bound to FeMn oxide, bound to organic matter, and residual. The residual fraction was the most abundant pool for Cu(2l-92%), Zn(28-89%) and Pb(23-94%). Almost sediments are low concentrated with Cd(2.7-52.8 mg/kg) than any other elements. But Cd dominate with non stable fraction (68-97%). Upper stream sediments are contaminated with Pb, and down area sediments are enriched with Zn. It is indicate high mobility of Zn and Cd.

Experimental Study of Chemical Effects on Head Loss across Containment Sump Strainer under Post-LOCA Environment (LOCA이후 원자로건물집수조 여과기의 수두손실에 대한 화학적 영향의 실험연구)

  • Ku, Hee-Kwan;Jung, Bum-Young;Hong, Kwang;Jung, Eun-Sun;Jeong, Hyun-Jun;Park, Byung-Gi;Rhee, In-Hyoung;Park, Jong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3748-3754
    • /
    • 2009
  • An integral head loss test in a test apparatus was conducted to simulate chemical effects on a head loss across a strainer in a pressurized water reactor (PWR) containment water pool after a loss of coolant accident (LOCA). The test was conducted during 30 days in the condition of a short spray, a long spray, and no materials with chemical effects. The result exhibited that the head loss was affected on amounts of the exposed materials according to spray conditions. XRD analysis of the collected precipitates showed that the precipitates were phosphate compounds. Comparison of the head loss with dissolved species concentration showed that high increase rate of the head loss resulted from the corrosion of aluminum and zinc but slow increase rate of the head loss resulted from the precipitates induced by Si, Mg, and Ca from leaching reaction at NUKON and concrete after passivation of metal specimens.