• 제목/요약/키워드: Pool boiling heat transfer coefficient

검색결과 56건 처리시간 0.033초

전조 나선핀 튜브의 외부핀 형상 변화에 의한 열전달 향상에 관한 연구 (A Study on the Heat Transfer Improvement of Integral-Fin Tubes by External Fin Effect)

  • 한규일;조동현
    • 수산해양기술연구
    • /
    • 제30권1호
    • /
    • pp.33-44
    • /
    • 1994
  • This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.

  • PDF

절삭유 냉각용 낮은 핀관의 응축 및 비등 열전달 성능에 관한 연구 (A Study on the Performance of the Condensation and the Boiling Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil)

  • 이종선
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.68-78
    • /
    • 1999
  • Heat transfer performance is studied for boiling and condensation of R-11 on integral-fin tubes. Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64 mm height respectively are tested. in case of condensation CFC-11 condensates at saturation stat of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1 bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube,. The tube having fin transfer coefficient concerns fin tubes with caves show higher valve than low fin tube having find density of 1299fpm and 30grooves. The overall heat transfer coefficient of fin tube with caves is about 5155 W/mK at 2.8m/s of water velocity, The value is abuot 2.7 times higher than plain tube and 1.3 times higher than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

다공도가 다른 전열촉진관의 냉매 풀비등에 미치는 오일의 영향 (Effect of Oil on Pool Boiling of Refrigerant on Enhanced Tubes having Different Pore Sizes)

  • 김내현;이응렬;민창근
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.254-261
    • /
    • 2006
  • The effect of enhanced geometry (pore diameter, gap width) is investigated on the pool boiling of R-123/oil mixture for the enhanced tubes having pores with connecting gaps. Tubes with different pore diameters (and corresponding gap widths) are specially made. Significant heat transfer degradation by oil is observed for the present enhanced tubes. At 5% oil concentration, the degradation is 26 to 49% for $T_{sat}=4.4^{\circ}C$. The degradation increases 50 to 67% for $T_{sat}=26.7^{\circ}C$. The heat transfer degradation is significant even with small amount of oil (20 to 38% degradation at 1% oil concentration for $T_{sat}=4.4^{\circ}C$), probably due to the accumulation of oil in sub-tunnels. The pore size (or gap width) has a significant effect on the heat transfer degradation. The maximum degradation is observed for $d_p$ = 0.20 mm tube at $T_{sat}=4.4^{\circ}C$, and for $d_p$=0.23 mm tube at $T_{sat}=26.7^{\circ}C$. The minimum degradation is observed for $d_p$=0.27 mm tube for both saturation temperatures. It appears that the oil removal is facilitated for the larger pore diameter (along with larger gap) tube. The highest heat transfer coefficient with oil is obtained for $d_p$ =0.23 mm tube, which yielded the highest heat transfer coefficient for pure R-123. The heat transfer degradation increases as the heat flux decreases.

고온평판의 분무냉각특성에 관한 연구 (A Study on the Spray Cooling Characteristics of hot Flat Plates)

  • 윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.880-887
    • /
    • 1998
  • In order to study heat transfer characteristics of spray cooling for the purpose of uniform and soft cooling of high temperature surface a series of experiments for a hot horizontal copper flat plate was performed by downflow spray water using flat spray nozzle. Cooling curves were mea-sured under the various experimental conditions of flow rates and temperatures of cooling water Surface temperature surface heat fluxes and heat transfer coefficients of horizontal upward-facing flat surface were calculated with cooling curves measured at each radial positions near the cooling surface by TDMA method. Generally heat transfer characteristics for spray cooling is simi-lar to boiling phenomenon of pool boiling. The minimum heat flux(MHF) appear at the surface temperature of about ${\Delta}Tsat=250^{\circ}C$ and the critical heat flux(CHF) appear at about ${\Delta}Tsat=250^{\circ}C$.

  • PDF

유동 및 풀비등에 있어서 한계열플럭스 상태하의 천이기구 (Transition mechanism during the critical heat flux condition in flow and pool boiling)

  • 김경근;김명환;권형정;김종헌;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.40-53
    • /
    • 1989
  • Boiling heat transfer phenomena is widely applied to BWR and electrical heating system because of its high heat transfer coefficient. In these systems, steady state heat transfer is dependent on nucleate boiling. When the heat generating rate is sharply increased or the cooling capacity of coolant is sharply decreased, sharp wall temperature rise is occurred under the critical heat flux(CHF) condition. This paper presents the simple wall temperature fluctuation model of transition mechanism in the repeating process of overheating and quenching, when coalescent bubble passes relatively slowly on the wall and simultaneously the transition from nucleate boiling to film boiling is carried at especially onset of the CHF state. The values calculated by the present model are resulted comparatively good with the measured.

  • PDF

탄소나노튜브 입자의 길이와 혼합비율이 나노유체의 비등 열전달에 미치는 영향에 대한 연구 (A Study on the Influence of Boiling Heat Transfer of Nanofluid with Particle Length and Mixing Ratio of Carbon Nanotube)

  • 박성식;김우중;김종윤;전용한;김남진
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2015
  • A boiling heat transfer system is used in a variety of industrial processes and applications, such as refrigeration, power generation, heat exchangers, cooling of high-power electronics components, and cooling of nuclear reactors. The critical heat flux (CHF) is the thermal limit during a boiling heat transfer phase change; at the CHF point, the heat transfer is maximized, followed by a drastic degradation beyond the CHF point. Therefore, Enhancement of CHF is essential for economy and safety of heat transfer system. In this study, the CHF and heat transfer coefficient under the pool-boiling state were tested using multi-wall carbon nanotubes (MWCNTs) CM-95 and CM-100. These two types of multi-wall carbon nanotubes have different sizes but the same thermal conductivity. The results showed that the highest CHF increased for both MWCNTs CM-95 and CM-100 at the volume fraction of 0.001%, and that the CHF-increase ratio for MWCNT CM-100 nanofluid with long particles was higher than that for MWCNT CM-95 nanofluid with short particles. Also, at the volume fraction of 0.001%, the MWCNT CM-100 nanofluid indicated a 5.5% higher CHF-increase ratio as well as an approximately 23.87% higher heat-transfer coefficient increase ratio compared with the MWCNT CM-95 nanofluid.

공작기계 절삭유 냉각용 낮은 핀관의 열전달 성능에 관한 연구 (A Study on the Performance of Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil of the Machine Tool)

  • 조동현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.125-133
    • /
    • 1998
  • Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64mm height respectively are tested. A plain tube having same diameter as the finned tubes is also tested for comparison. In case of condensation CFC-11 condensates at saturation state of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube. The tube having fin density of 1299fpm and 30grooves has the best condensation overall heat transfer coefficient. However, as far as boiling heat transfer coefficient concerns, fin tubes with cave show higher value than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

임계열유속 향상을 위한 나노물질의 산화처리에 대한 연구 (Study on the Oxidation Treatment of Nanoparticles for the Critical Heat Flux)

  • 김우중;전용한;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.39-49
    • /
    • 2017
  • Pool boiling, one of the key thermal-hydraulics phenomena, has been widely studied for improving heat transfer efficiencies and safety of nuclear power plants, refrigerating systems, solar-collector heat pipes, and other facilities and equipments. In the present study, the critical heat flux (CHF) and heat-transfer coefficients were tested under the pool-boiling state using graphene M-5 and M-15 nanofluids as well as oxidized graphene M-5 nanofluid. The results showed that the highest CHF increase for both graphene M-5 and M-15 was at the 0.01% volume fraction and, moreover, that the CHF-increase ratio for small-diameter graphene M-5 was higher than that for large-diameter graphene M-15. Also at the 0.01% volume fraction, the oxidized graphene M-5 nanofluid showed a 41.82%-higher CHF-increase ratio and a 26.7%-higher heat-transfer coefficient relative to the same nanofluid without oxidation treatment at the excess temperature where the CHF of distilled water occurs.

수평관에서 프로판, 이소부탄, BFC134a를 포함한 혼합냉매의 풀비등 열전달계수 (Pool Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a on a Plain Tube)

  • 박기정;백인철;정동수
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.955-963
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficients (HTCs) were measured with one nonazeotropic mixture of Propane/Isobutane and two azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube with heat fluxes of $10kW/m^2\;to\;80kW/m^2$ with an interval of $10kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of Propane/Isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with a larger gliding temperature difference. Stephan and $K{\ddot{o}}rner's$ and Jung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/Isobutane and Propane/HFC134a.

Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings

  • Jun, Seongchul;Kim, Jinsub;Son, Donggun;Kim, Hwan Yeol;You, Seung M.
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.932-940
    • /
    • 2016
  • Pool boiling heat transfer of water saturated at atmospheric pressure was investigated experimentally on Cu surfaces with high-temperature, thermally-conductive, microporous coatings (HTCMC). The coatings were created by sintering Cu powders on Cu surfaces in a nitrogen gas environment. A parametric study of the effects of particle size and coating thickness was conducted using three average particle sizes (APSs) of $10{\mu}m$, $25{\mu}m$, and $67{\mu}m$ and various coating thicknesses. It was found that nucleate boiling heat transfer (NBHT) and critical heat flux (CHF) were enhanced significantly for sintered microporous coatings. This is believed to have resulted from the random porous structures that appear to include reentrant type cavities. The maximum NBHT coefficient was measured to be approximately $400kW/m^2k$ with APS $67{\mu}m$ and $296{\mu}m$ coating thicknesses. This value is approximately eight times higher than that of a plain Cu surface. The maximum CHF observed was $2.1MW/m^2$ at APS $67{\mu}m$ and $428{\mu}m$ coating thicknesses, which is approximately double the CHF of a plain Cu surface. The enhancement of NBHT and CHF appeared to increase as the particle size increased in the tested range. However, two larger particle sizes ($25{\mu}m$ and $67{\mu}m$) showed a similar level of enhancement.