• 제목/요약/키워드: Pool Fires

검색결과 52건 처리시간 0.023초

FDS 모델을 이용한 메탄올 풀 화재의 질량연소플럭스 예측 (Predicting the Mass Burning Flux of Methanol Pool Fires by Using FDS Model)

  • 김성찬
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.12-18
    • /
    • 2017
  • 본 연구는 FDS의 액체증발모델을 이용하여 메탄올 풀 화재의 질량연소플럭스를 예측하고 복사분율, 평균흡수계수와 같은 연료의 열적 물성값에 따른 영향을 평가하였다. 해석대상 풀의 직경은 5 cm에서 200 cm 사이이며 해석영역의 크기는 풀의 크기에 비례하여 구성하였다. 해석에 적용된 기준격자는 격자민감도 평가를 통해 결정되었으며 약 750,000개의 격자를 적용하였다. 메탄올 풀 화재에 대해 FDS 액체증발모델을 적용하여 계산된 질량연소플럭스는 해석대상 풀 직경에 따른 천이특성을 잘 나타냈으며 전체적으로 실험편차 내에서 기존 실험과 일치된 결과를 예측하였다. 질량연소플럭스는 복사분율 증가에 따라 증가하는 경향을 보였으며 풀의 직경이 작은 경우 평균흡수계수의 영향이 상대적으로 크게 나타났다.

실내공간에서 화재 발생위치에 따른 연기거동에 대한 실험연구 (An Experimental Study of Smoke Movement of the Various Fire Location in Room)

  • 유홍선;정진용;이재하;홍기배
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.703-709
    • /
    • 2002
  • In order to investigate the smoke movement in three dimensional room fires, the center fire, wall fire and corner fire plume in different sized fires were studied experimentally by rectangular pool fire using methanol as a fuel. As the fire size became larger for the center fires placed at the center of the floor, the air flow rate entrained through the opening, average hot layer temperature, flame angle deflected backwards and mean flame height was observed to increase. On the other hand, as the fire size became smaller, the neutral plane height in the door and time reached steady-state was observed to decrease. The average hot layer temperature, mean flame height and doorway neutral plane height obtained from comer fire were higher than those produced by wall fires and center fires. The simple model for describing the effect of walls on the mean flame height was presented. It was shown that the model provides a good description of the present measurements, when used with the assumption by Hansell(1993), that the increase of the average flame height is equal to the ratio of the open to the total perimeters of the trays. Also the two models for predicting the effects of walls on the mean flame height were presented. These models overestimated the measured values of the mean flame height above fuel trays close to a wall and in a corner by approximately 19-26%, respectively.

A Study on the Radiation Effect of the Smoke Movement in Room Fires

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권3호
    • /
    • pp.162-175
    • /
    • 2002
  • To investigate smoke movement with radiation in a room fires, a numerical and experi-mental analysis were performed. In this paper, results from a field model based on a self-developed SMEP (Smoke Movement Estimating Program) were compared with Stockier's ex-periment and the experiments on various sized pool fires in a room with door The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k- $\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the S-N discrete ordinates method (DOM). The result of the cal-culated smoke temperature considering radiation effect has shown good agreement compared with the experimental data, although there are large discrepancy in the hot smoke layer be-tween the temperature predicted by the SMEP with only convection effect and obtained by the experimental result. This large discrepancy is caused from the radiation effect of $H_2O$ and $CO_2$ gas under smoke productions. Hence the radiation effect under smoke in fire is the point to be specially considered in order to produce more realistic result.

도로터널 저압 물분무설비 화재진압 실험 (Fire Suppression Experiment for Road Tunnel Low Pressure Water Spray Systems)

  • 최병일;한용식;김명배;소수현
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.218-221
    • /
    • 2008
  • The real scale fire suppression test inside a road tunnel were carried out for water spray systems. The dimension of the tunnel is 7.5m in height and 11.6m in width. 3 different water spray nozzle systems with low operating pressure less than 3.5 bar were used in the experiment. Two types of fires were tested. One is a $1.4m^2$ heptane pool fire and the other is a 2000CC passenger car fire. From the experiment, the spray densities of tested systems were about $6.0\;l/min/m^2$ which is currunt domestic guideline. Although all the systems cannot extinguish the tested fires, it was found that they can reduce the tunnel temperature and have a capability to control and suppress the tested fire.

  • PDF

철도터널 화재시 구난역 내의 연기거동에 미치는 배연효과에 관한 수치연구 (Ventilation Effects on Smoke Behavior in Rescue Station for Tunnel Fires)

  • 장원철;김동운;유홍선;이성혁
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2130-2138
    • /
    • 2008
  • The present study investigates the ventilation effects on smoke spreading characteristics in railway tunnels with the rescue stations. Experiments were carried out for n-heptane pool fires with a square length 4 cm at different fire locations, and the heat release rates (HRR) were obtained by the measurement of burning rates. In addition, using the commercial code (FLUENT), the present article presents numerical results for smoke behavior in railway tunnels with rescue station, and it uses the MVHS (Modified Volumetric Heat Source) model for estimation of combustion products resulting from the fire source determined from the HRR measurement. As a result, it is found that smoke propagation is prevented successfully by the fire doors located inside the cross-passages and especially, the smoke behavior in the accident tunnel can be controlled through the ventilation system because of substantial change in smoke flow direction in the cross-passages.

  • PDF

물과 공기가 공급되는 2유체노즐을 활용한 에탄올 풀화재 소화 실험 (Ethanol Pool Fire Extinguishing Experiment Using Twin-fluid Nozzle Supplied with Water and Air)

  • 정찬석;이치영
    • 한국화재소방학회논문지
    • /
    • 제33권3호
    • /
    • pp.37-43
    • /
    • 2019
  • 본 연구에서는 2유체노즐을 이용하여 에탄올 풀화재(Ethanol pool fire) 소화 실험을 수행하였다. 화원 면적이 5.027 × 10-3 ㎡와 1.131 × 10-2 ㎡(연료팬 직경은 각각 80 mm와 120 mm)를 대상으로 하였고, 화재 소화 실험 시 2유체노즐로의 공급 유량의 경우 물은 156-483 g/min, 공기는 20-70 L/min 조건이었다. 화원 면적이 증가하면 열방출률도 증가하였고, 화원 면적이 5.027 × 10-3 ㎡와 1.131 × 10-2 ㎡일 때의 열방출률은 각각 1.01 kW와 5.51 kW로 측정되었다. 본 실험 영역에서 2가지 화원 면적 조건 모두, 물 공급 유량 조건과는 상관없이 공기 공급 유량이 40 L/min 이상의 조건에서 소화가 가능하였다. 소화 소요 시간 및 물 소모량의 경우 모든 물 공급 유량 조건에서 공기 공급 유량이 증가함에 따라 감소하는 경향이 관찰되었고, 공기 공급 유량이 비교적 많은 영역(예를 들면, 약 50 L/min 이상)에서 소화 소요 시간은 약 23 s, 물 소모량은 약 185 g 이내로 나타났다. 본 연구 결과와 단일유체노즐을 이용한 기존 연구 간 단위 열방출률 당 물 소모량 비교를 통하여, 2유체노즐이 단일유체노즐에 비해 더 적은 물 소모량으로 소화가 가능할 수 있음을 확인하였다.

헵탄 풀화재에서 불활성기체 소화농도 (Extinguishing Concentration of Inert Gases in Heptane Pool Fires)

  • 정태희;이의주
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.71-76
    • /
    • 2012
  • The coflow velocity effect on the minimum extinguishing concentration(MEC) was investigated experimentally in heptane cup-burner flames. Various inert gases($N_2$, Ar, $CO_2$, He) were added into the oxidizer to find the critical concentration and the effectiveness of the agents on flame extinction. The experimental results showed that the MECs were increased with increasing coflow velocity for most inert gases except helium, but the higher coflow velocity induced the lower burning rates of heptane. This indicated that the increase of coflow velocity resulted in the decrease of fuel velocity evaporated from fuel surface, and hence the stain rate on the reaction zone was also decreased. In the case of helium as a additive, the extinguishing concentration was independent of the coflow velocity because the heat conductivity was ten times larger than the other inert gases and flow effect by a strain rate might be compensated for heat loss to the surroundings.

아세톤 풀 증발 실험을 통한 원격 유·누출 모니터링 시스템의 효용성 확인 (Confirmation of the Efectiveness of Remote Chemical Spills and Leak Monitoring System through Acetone Pool Evaporation Experiments)

  • 김은희;이슬기;마병철
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.25-31
    • /
    • 2022
  • In this study, the spill and leak system is developed to provide real-time remote monitoring of industrial complexes where chemical accidents have been occurring every year. The spill and leak monitoring system uses IR-RCD equipment mounted on a 70m-high steel tower to detect chemical substances, thereby detecting chemical accidents such as leaks, fires, and explosions in real time. If IR-RCD equipment can actually detect chemical substances at a long distance, accurate and rapid initial response can be expected. Therefore, in order to confirm that IR-RCD equipment can detect chemical leakage accidents occurring at a long distance, acetone was selected as the experimental substance and a detection experiment was designed. The experiment was conducted using the acetone pool evaporation method at the wharf which was located 1.5 km away from IR-RCD equipment, and it was confirmed whether IR-RCD equipment could detect acetone in real time through the control monitor.

차량화재 안전설계를 위한 휘발유/에탄올 혼합연료의 연소생성물 배출 특성 (Emission Characteristics of Gasoline/ethanol Mixed Fuels for Vehicle Fire Safety Design)

  • 김신우;이의주
    • 한국안전학회지
    • /
    • 제34권1호
    • /
    • pp.27-33
    • /
    • 2019
  • Combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally for vehicle fire safety. The numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. The simulating cases with three independent variables, i.e. ethanol mole fraction, equivalence ratio and residence time, were designed to predict and optimized systematically based on the response surface method (RSM). The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence need to adjust combustion itself rather than an after-treatment system. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires in the cup burner. The results show that soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. For soot morphology by TEM sampling, the incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

터널 화재시 역기류의 위치 결정에 관한 실험적 연구 (An Experimental Study on the Determination of Backlayering Distance in Tunnel Fires)

  • 이성룡;유홍선
    • 터널과지하공간
    • /
    • 제14권4호
    • /
    • pp.269-274
    • /
    • 2004
  • 본 연구에서는 터널에서 화재 발생시 역기류의 위치를 결정하기 위하여 축소실험을 실시하였다. Froude 상사를 사용하여 1/20로 축소된 모형터널에서 실험을 실시하였으며 가연물질로는 에탄올을 사용하였다. 한 변의 길이가 8-16cm의 화원을 사용하였으며 발열량은2.47-12.30㎾이다. 터널 단면의 종횡비(터널높이/터널폭)가 증가할수록 역기류를 제어하기 위해 더 큰 배연 풍속이 요구됨을 확인하였다. L$_{B}$$^{*}$ <5일 때 역기류를 막기 위한 배연속도가 0.25승에서부터 발열량에 비례하여 증가한다. L$_{B}$$^{*}$ $\geq$5에서는 발열량의 0.3승에 비례한다.