• 제목/요약/키워드: Polyvinylpyrrolidone(PVP)

검색결과 145건 처리시간 0.023초

한우 난포란의 체외성숙 시 여러 가지 첨가물이 배 발생과 품질에 미치는 영향 (Effect of Various Supplements on Embryo Development and Quality of Bovine Embryos during In Vitro Maturation)

  • 박흠대;장미진;박용수
    • Reproductive and Developmental Biology
    • /
    • 제30권1호
    • /
    • pp.21-26
    • /
    • 2006
  • 본 연구는 체외성숙 배지에 첨가하는 PVP의 농도, EGF, cysteine 및 PVP의 단독 또는 혼합첨가가 한우 체외수정란의 체외발생에 미치는 영향을 검토하였다. 체외성숙 배지에 PVP의 첨가농도$(0.1{\sim}3.0%)$에 따른 분할율은 차이가 없었으나, 배반포 발달율은 0.5% PVP 첨가군이 가장 높았다(P<0.05). PVP, EGF 및 cysteine의 단독 및 혼합 첨가에 따른 분할율은 cysteine 단독첨가군이 높았으나(P<0.05), 배반포 발달율은 차이가 없었다. Inner cell mass 수는 대조군과 cysteine 첨가군이 PVP 첨가군에 비하여 유의하게 높았고(P<0.05), 총 세포수도 cysteine 첨가군에서 가장 높았다. 수정란이식 결과는 대조군, EGF, cysteine 및 EGF+cysteine 군의 임신율은 $46.1{\sim}63.6%$로서 비슷하였으나, PVP 첨가군은 10%로서 다른 군에 비하여 유의하게 낮았다(P<0.05). 본 연구 결과는 체외성숙 배지에 PVP의 첨가로 배 발생은 가능하지만, 세포의 품질에는 악영향을 미치는 것을 보여준다.

POLYVINYLPYRROLIDONE METAL COMPLEXES. FORMATION STABILITY AND THEIR BIOLOGICAL ACTIVITY

  • Lee, V. A.;S. Sh. Rashidova
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.463-465
    • /
    • 1998
  • The peculiarities of the polyvinylpyrrolydone (PVP) interaction with transition metal ions of the first row in solution were studied. It was shown that PVP macromolecules due to their swelling conformation in organic solvents form the stable metal complexes. Metal ions were bond with oxygen and nitrogen atoms of PVP lactam rings. In water solution every metal ion interacts with one or two oxygen atoms out of 10-12 monomer units of the polymer. The additional contraction of PVP macromolecule coils in water have been found out by dissolving of the polymer metal complexes (PMC) synthesized in organic media. Toxicity, blood forming and immune stimulating activity and pharmaco-kinetic too of obtained polymers and their metal completes have been investigated. The factors and effects that responsible fur changing of PMC physical-chemical and biological properties have been estimated.

  • PDF

The xps study of the Cu-Zn nanofiber

  • Jeong, Eunkang;Kang, Yujin;Park, Juyun;Kang, Yong-Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.236.2-236.2
    • /
    • 2015
  • The copper-zinc(Cu-Zn) nanofiber was prepared by electrospinning method. The Cu/PVP (polyvinylpyrrolidone) and Zn/PVP precursor solutions were prepared by dissolution of copper sulfate and zinc acetate in methanol, respectively. The PVP was used to control the viscosity of the precursor solutions. The optimized ratio for the Cu/PVP and Zn/PVP nanofibers was determined separately. Then the suitable ratio of the precursor solutions was applied for fabrication of Cu/Zn/PVP nanofiber. For the electrospinning method, the precursor solutions were filled in a syringe. The distance between metallic needle on the syringe and collector was fixed at 16 cm and the voltage was applied on the tip was 13.0 kV. And the as-spun nanofiber was heated at 353K for removal of residual solvent. Then the heated nanofibers were calcined at 973K to decompose PVP. The obtained Cu, Zn, and Cu-Zn nanofibers were investigated with X-ray photoelectron spectroscopy (XPS) for the chemical properties, scanning electron microscopy (SEM) for the morphologies, and X-ray diffraction (XRD) to characterize the crystallinity and phase of nanofibers.

  • PDF

포화된 다공성매체에서 PVP-코팅된 은나노입자의 이동성 연구 (Transport of PVP-coated Silver Nanoparticles in Saturated Porous Media)

  • 배수진;장민희;이우춘;박재우;황유식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권1호
    • /
    • pp.104-110
    • /
    • 2016
  • The transport of silver nanoparticles (AgNPs) was investigated through a column packed with sand. A series of column experiments were carried out to evaluate the effect of ionic strength (IS), pH, electrolyte type and clay mineral on mobility of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs). The deposition of PVP-AgNPs was increased with increasing solution ionic strength and decreasing pH. Furthermore, the depositon of PVP-AgNPs was affected by the electrolyte type (NaCl vs. NaNO3) and was shown to be greater at NaNO3 solution. Also, the transport of PVP-AgNPs was greatly increased after the pre-deposition of clay particles on sand. Our results suggest that various environmental factors can influence the mobility of PVP-AgNPs in soil-groundwater systems and should be carefully considered in assessing their environmental risks.

네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조 (Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet)

  • 하용황;강윤지;최승훈;윤호성;안종관
    • 한국산학기술학회논문지
    • /
    • 제13권12호
    • /
    • pp.6187-6195
    • /
    • 2012
  • 네오디뮴 폐자석 침출액으로부터 희유금속인 네오디뮴을 회수하기 위해서는 네오디뮴과 같이 침출되는 철의 부가가치를 높이는 연구가 필요하다. 본 연구에서는 네오디뮴과 같이 침출되는 철의 유용자원화를 위한 기초연구로 철 나노분말 제조하는 실험을 수행하였다. 본 연구는 $FeCl_3$ 용액을 철 분말 원료로, 분산제는 $Na_4O_7P_2$와 Polyvinylpyrrolidone를 이용하였고, 환원제로는 $NaBH_4$, 철 나노분말 핵생성 촉진제 시드(seed)로 염화팔라듐을 사용하였다. 제조한 철 나노분말을 XRD, 전자현미경(SEM) 및 PSA 등을 이용하여 분말의 형상 및 크기 등을 분석하였다. 철과 $NaBH_4$의 농도비가 1 : 5이며, 반응시간이 30분 이상인 경우에서 철 분말이 제조되었으며, 이때 철 분말은 구형이었으며, 입도는 약 50 nm ~ 100 nm 크기였다. 분산제 $Na_4O_7P_2$의 경우 100 mg/L에서 철이온의 제타포텐셜이 음의 값을 가지므로 100 mg/L로 일정하게 하고, PVP와 Pd의 농도를 다양하게 하였을 경우, $FeCl_3$와 PVP와 Pd의 질량비 1 : 4 및 1 : 0.001에서, 분산이 양호하고, 입도 100 nm 크기인 철 나노분말을 합성하였다.

Polyethersulfone-PVP 용액의 상전이를 통한 아연공기전지의 다공성 분리막 제조 (Preparation of Porous Separators for Zn Air Batteries Through Phase Inversions of Polyethersulfone-PVP Solutions)

  • 조유송;구자경
    • 멤브레인
    • /
    • 제24권1호
    • /
    • pp.10-19
    • /
    • 2014
  • 본 연구에서는 아연공기전지용 분리막으로 사용하기 위한 다공성 막을 Polyethersulfone (PES) 용액의 상전이법을 이용하여 제조하였다. 캐스팅 용액은 PES/polyvinylpyrrolidone(PVP)/N-methylpyrrolidone(NMP) 용액으로 그리고, 비용매는 물을 사용하여 분리막을 제조하였다. 제조된 분리막을 이용하여 아연공기전지를 제작하였다. 분리막의 모폴로지는 캐스팅 용액 내의 PES 및 PVP의 함량을 통해 조절하였다. 제조된 분리막의 기계적 특성, 이온전도도 및 모폴로지는 인장실험, impedance 실험 및 SEM을 이용하여 측정하였다. 아연공기전지의 성능은 current interrupt method (CIM)와 정전류 방전실험을 통하여 측정하였다. 캐스팅 용액 내의 PES 함량이 증가함에 따라 기계적 강도는 증가한 반면 이온전도도는 감소하였다. 반면, 캐스팅 용액 내의 PVP 함량이 증가함에 따라 이온전도도는 증가하였지만 기계적 강도는 감소하였다. 이와 같은 이온전도도 경향의 아연공기전지 내에서의 효과는 current interrupt method와 정전류 방전실험에서 확인되었다. PES 함량이 높은 캐스팅 솔루션의 분리막으로 제조된 전지는 높은 IR 손실과 낮은 방전용량을 보였으며, PVP 함량이 높은 캐스팅 솔루션의 분리막으로 제조된 전지는 낮은 IR손실과 높은 방전용량을 보였다.

코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작 (Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure)

  • 전태선;이성호;김용신
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.383-387
    • /
    • 2014
  • Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

케토프로펜 패취제의 제제설계 및 피부 투과 특성 (Formulation and Skin Permeation Characteristics of Ketoprofen Patches)

  • 오흥설;이용석;김하영;이광표
    • 약학회지
    • /
    • 제45권5호
    • /
    • pp.506-512
    • /
    • 2001
  • Ketoprofen (KP) was formulated as a transdermal patch using the percutaneous penetration enhancers sorbitan monmmleate(SMO), polyvinylpyrrolidone(PVP). The control patch without penetration enhancers showed a KP flux of 8.9$\pm$0.75$\mu\textrm{g}$/$\textrm{cm}^2$/h The flux was increased in proportion to the concentration of SMO added. Furthermore, lag times were decreased upon addition of SMO. Conversely; the skin flux of KP was decreased in proportion to the concentration of PVP added. Pharmacokinetic parameters including $C_{max}$, $T_{max}$, and AUC were increased when SMO was added. However, $C_{mas}$ significantly decreased by the addition of PVP. $T_{max}$ was not significantly different in 2%, 4%, and 8% PVP patches. Patches containing 4% PVP showed the highest AUC value (19.158$\mu\textrm{g}$.h/ml). We found that the effectiveness of the two percutaneous penetration enhancers for topical KP patches was similar, with the addition of appropriate amounts of HPC modifying both skin flux and lag time of KP in the patches. In conclusion, it is possible to manufacture KP patches exhibiting high AUC, high skin flux, and short lag time using percutaneous penetration enhancers of SMO and PVP.

  • PDF

위내체류를 목적으로 한 알부민 가교 PVP 하이드로겔의 팽윤특성 (Albumin-Crosslinked PVP Hydrogel as a Gastric Retention Platform)

  • 심창구;여소현
    • Journal of Pharmaceutical Investigation
    • /
    • 제23권3호
    • /
    • pp.145-153
    • /
    • 1993
  • Retaining a drug in the stomach by some means is sometimes necessary to extend the G1 absorption time of the drug more than 6-8 hrs. Hydrogel has often been examined for its feasibility as a dosage form, so called platform, that could be retained in the stomach due to its excellent swelling properties in the gastric fluid. In this study, polyvinylpyrrolidone (PVP) hydrogel crosslinked by albumin or acrylated albumin was synthesized in a tablet form and evaluated for its possibility as the platform. The synthesis of the hydrogel was performed by $^{60}Co\;{\gamma}-ray$ irradiation of N-vinyl-2-pyrrolidone (monomer) in the presence of a crosslinking agent: aqueous solution of albumin or acrylated albumin. Synthetic conditions such as radiation dose, dose rate and concentration of crosslinking agent were varied in order to optimize the swelling and mechanical properties of the hydrogels. Degree of swelling of albumin-crosslinked PVP (Al-PVP) was highly dependent on radiation dose, dose rate and albumin concentration: it was decreased as they increased. On the other hand, that of acrylated albumin-crosslinked PVP (Acryl-PVP) was almost independent on them except dose rate: it was decreased as the radiation dose rate increased. The compressive strength of the two hydrogels was decreased as the dose rate increased. Digestion of both PVP in artificial gastric fluid containing pepsin was delayed by the ${\gamma}-ray$ irradiation. In conclusion, Al-PVP and Acry-PVP with diverse swelling and mechanical properties could be obtained by controlling synthetic conditions, mainly the irradiation dose rate.

  • PDF