• Title/Summary/Keyword: Polyurethane Heart Valve Prosthesis

Search Result 2, Processing Time 0.019 seconds

PIV Measurements of Flow Downstream of Polyurethane Heart Valve Prosthesis for Artificial Heart: Pulsatile Flow Experiment (PIV를 이용한 인공심장용 폴리우레탄 인공판막 하류의 유동 측정 : 맥동유동실험)

  • Yu, Jeong-Yeol;Kim, Jung-Gyeong;Seong, Jae-Yong;Jang, Jun-Geun;Min, Byeong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.629-639
    • /
    • 2002
  • In-vitro flow characteristics downstream of a polyurethane artificial heart valve and a Bjork-Shiley Monostrut mechanical valve have been comparatively investigated in pulsatile flow using particle image velocimetry (PIV). With a triggering system and a time-delayed circuit the velocity distributions on the two perpendicular measurement planes downstream of the valves are evaluated at any given instant in conjunction with the opening behaviors of valve leaflets during a cardiac cycle. The regions of stasis and high shear stress can be found simultaneously by examining the entire view of the instantaneous velocity and Reynolds shear stress fields. It is known that high shear stress regions exist at the interface between strong axial jet flows along the wall and vortical flows in the central area distal to the valves. In addition. there are large stagnation or recirculation regions in the vicinity of the valve leaflet, where thrombus formation can be induced by accumulation of blood elements damaged in the high shear stress zones. A correlation between the unsteady flow patterns downstream of the valve and the corresponding opening postures of the polyurethane valve membrane gives useful data necessary for improved design of the frame structure and leaflet geometry of the polyurethane valve.

Measurement of Flow Field Downstream of Polyurethane Artificial Heart Valve with Floating Valve Leaflet (열림판이 지지대에 고정되지 않은 폴리우레탄 인공판막 하류의 유동장 측정)

  • Kim, J.K.;Sung, J.;Chang, J.K.;Min, B.G.;Yoo, J.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.247-248
    • /
    • 1998
  • The effect of unattached valve leaflet on flow field downstream of a floating and flapping polyurethane heart valve prosthesis was investigated. With a triggering system and a time-delay circuit the instantaneous velocity field downstream of the valve was measured by particle image velocimetry (PIV) in conjunction with the opening posture of a flexible valve leaflet during a cardiac cycle. Reynolds shear stress distribution was calculated from the velocity fields and wall shear stress was directly measured by hot-film anemometry (HFA). The floating motion of the valve leaflet resulted in the reduction of pressure drop and recirculating flow region downstream of the valve.

  • PDF