• Title/Summary/Keyword: Polysulfone (PSf) membrane

Search Result 68, Processing Time 0.024 seconds

Enhancement of hydrophilicity and anti-fouling property of polysulfone membrane using amphiphilic nanocellulose as hydrophilic modifier

  • Yang, Xue;Liu, Lifang;Jiang, Shuai
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.461-469
    • /
    • 2019
  • In the present work, we present a new effective hydrophilicity modifier for polysulfone (PSf) membrane. Firstly, amphiphilic nanocellulose (ANC) with different substitution degrees (SD) was synthesized by esterification reaction with nanocellulose (NC) and dodecyl succinic anhydride (DDSA). The SD and morphology of ANC were characterized by titration method and transmission electron microscopy (TEM). Then, the polysulfone (PSf)/ANC blend membranes were prepared via an immersion phase inversion method. The influence of SD on the morphology, structure and performances of PSf/ANC blend membrane were carefully investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), mechanical property test, contact angle measuring instrument and filtration experiment. The results showed that the mechanical property, hydrophilicity and anti-fouling property of all the PSf/ANC blend membranes were higher than those of pure PSf membrane and PSf/NC membrane, and the membrane properties were increased with the increasing of SD values. As ANC-4 has the highest SD value, PSf/ANC-4 membrane exhibited the optimal membrane properties. In conclusion, the prepared ANC can be used as an additive to improve the hydrophilicity and anti-fouling properties of polysulfone (PSf) membrane.

The Preparation of Quaternary Ammonium Polysulfone and its Permeation Behavior (II) - The Permeation Characteristics of Quaternary Ammonium Polysulfone Membranes - (Quaternary Ammonium Polysulfone막의 제조 및 투과 특성(II) - Quaternary Ammonium Polysulfone막의 투과특성 -)

  • 현진호;전종영;탁태문
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 1996
  • This study is undertaken to investigate the effect of positive charge on the premeation characteristics of quaternary ammonium polysulfone (AMPS) membrane. AMPS membrane having a hydrophilic property was less fouled than PSf membrane. AMPS membrane had a positive charge and was thought to be able to expel charged solutes, such as basic dyes, proteins and amino acids, having same sign as the membrane surface.

  • PDF

Preparation of Sulfonated Polysulfone Membranes (Sulfonated Polysulfone막의 제조 및 투과특성)

  • 김윤조;전종영;구성회;탁태문
    • Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.10-21
    • /
    • 1996
  • This study is undertaken to investigate the major factor which causes a fouling phenomenon in membrane separation system and effect of hydrophilic treatment on fouling repression of hydrophobic polymer (polysulfone, PSf). Chlorosulfonic acid (CSA) and sulfuric acid as a sulfonating agents are used to produce sulfonated PSf (SPSf). SPSf membrane is prepared under several conditions to investigate it's separation process. The extent of fouling-repression is measured by membrane filtration index (MFI) value. With increasing the ion exchange capacity (I.E.C), the flux of SPSf membrane is decreased but the rejection is increased and the flux is less reduced. According to the MFI value, the SPSf membrane has a fouling-retardant effect.

  • PDF

Durability of Cation Exchange Membrane Containing Psf (polysulfone) in the All-vanadium Redox Flow Battery (Psf (polysulfone) 함유 양이온교환막의 바나듐 레독스-흐름 전지에서의 내구성)

  • Kim, Joeng-Geun;Kim, Jae-Chul;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • The cation exchange membrane using TPA (tungstophosphoric acid) and the block co-polymer of polysulfone and polyphenylenesulfidesulfone was prepared for a separator of all-vanadium redox flow battery. The membrane resistance of the prepared cation exchange membrane in 1mol/L $H_2SO_4$ aqueous solution was measured. The membrane resistance of the prepared Psf-PPSS and Psf-TPA-PPSS cation exchange membrane was about $0.94{\Omega}{\cdot}cm^2$. Electrochemical property of all-vanadium redox flow battery using the prepared cation exchange membrane was measured. The measured charge-discharge cell resistance of V-RFB at 4 A decreased in the order; Nafion117 < Psf-TPA-PPSS < Psf-PPSS. The durability of membrane was earried out by soaking it in $VO_2{^+}$ solution and evaluated by measuring the charge-discharge cell resistance of V-RFB with an increase of soaking time. The prepared Psf-PPSS cation exchange membrane had high durability and Psf-TPA-PPSS cation exchange membrane had almost same durability compared with Nafion117.

Miscibility of Polysulfone/Poly(1-vinylpyrrolidone-co-styrene) Blends and Their Application to the Ultrafiltration Membrane

  • Kim, Joo-Heun;Yoo, Jung-Eun;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.209-214
    • /
    • 2002
  • Miscibility of polysulfone (PSf) with various hydrophilic copolymers was explored. Among these blends, PSf gives homogeneous mixtures with poly(1-vinylpyrrolidone-co-styrene) copolymers [P(VP-S)] when these copolymers contained VP from 68 to 88 wt%. Microporous membranes for the ultrafiltration process were prepared from PSf blends with P(VP-S) copolymers. The membranes prepared from the PSf/(VP-S) blends exhibited higher water flux than the membranes prepared from PSf irrespective of the VP content. The solute rejection examined with the membranes fabricated from the miscible blends was similar to that of PSf membrane. However, the solute rejection examined with the membranes fabricated from the immiscible blends was lower than that of PSf membranes.

Preparation of Polysulfone Microfiltration Membranes by a Sulfonated Polyethersulfone Additive (술폰산기를 가지는 폴리에테르술폰 첨가제를 이용한 폴리술폰 정밀여과막의 제조)

  • Kim, Nowon;Jung, Boram
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • Polysulfone (PSF) is one of an important polymer that has been widely used in the manufacture of asymmetric microfiltration (MF) membranes. PSF membrane is considered as hydrophobic membrane that easily fouled during membrane operation process. The blending method is an effective method for improving the fouling resistance of PSF membranes. sPES (sulfonated polyethersulfone) is one of the useful polymers that can be used in PSF polymer blend method to improve hydrophilicity of PSF membranes. In this study, microfiltration polymer membranes were prepared by using PSF/sPES/PVP/BE/DMF casting solution and water coagulant. The morphology of MF membranes was changed by addition of a small amount of sPES in casting solution. The morphology of the sPES added membranes was changed into a highly asymmetric structure. The active layer grew and mean pore size was decreased by addition of sPES. However, the water flux of PSF/sPES/DMF/PVP/BE membrane was higher than that of PSF/DMF/PVP/BE membrane.

The Effect of ZnCl$_2$ on Polysulfone Membrane

  • Kim, Sue-Ryeon;Lee, Kew-Ho;Jhon, Mu-Shik
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.34-35
    • /
    • 1993
  • The study was undertaken to investigate the effects of ZnCl$_2$ in polysulfone(PSf)/N-methylpyrrolidone(NMP) on the structure and performance of its membrane. The effects of additives on the performances of membranes have been studied. It has been shown that some low molecular weight additives in polysulfone(PSf) casting solutions have effects on the performances of membranes cast from these solutions. It had been reported that ZnCl$_2$, as the additives-in PSf casting solution, decreases water permeability and increases the rejection rate of its membrane.

  • PDF

Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane

  • Ariono, Danu;Aryanti, Putu T.P.;Wardani, Anita K.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.353-361
    • /
    • 2018
  • Fouling characteristics of humic substances on tight ultrafiltration (UF) membrane have been investigated. The tight UF membrane was prepared by blending polysulfone (PSf) in N.N-dimethylacetamide (DMAc) with 25%wt of Polyethylene glycol (PEG400) and 4%wt of acetone. Fouling characteristic of the modified PSf membrane was observed during peat water filtration in different trans-membrane pressure (TMP). It was found that the acetone modified membrane provided 13% increase in TMP during five hours of peat water filtration, where a stable flux was reached within 150 minutes. Meanwhile, the increase of TMP from 10 psig to 30 psig resulted in a fouling resistance enhancement of 60%. Furthermore, based on the fouling analysis, fouling mechanism at the first phase of filtration was attributed to intermediate blocking while the second phase was cake formation.

Study of Polysulfone Membrane for Membrane-covered Oxygen Probe System (산소 전극 시스템에 사용되는 polysulfone막에 대한 연구)

  • Hong, Suk In;Kim, Hyun Joon;Park, Hee Young;Kim, Tae Jin;Jeong, Yong Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.877-887
    • /
    • 1996
  • The ideal membranes for membrane-covered oxygen probes system should be selectively permeable for oxygen and chemically inert, and have good mechanical strength. Polysulfone(PSf) was selected to develop the membrane for membrane-covered oxygen electrodes system. PSf membranes have properties such as good reproducibility, good mechanical strength, chemical inertness, and high heat resistance. PSf membranes were cast from polymer solution on the glass plate at constant temperature, and casting solvents used were tetrahydrofuran(THF), methylene chloride, and N-methyl-2-pyrrolidone(NMP). Tricresyl phosphate(TCP) as plasicizer was added to PSf to increase the softness of membrane. The permeation characteristics were observed for pure oxygen and nitrogen through pure PSf membranes by variable volume method and membrane-covered electrode system. The permeability coefficients of oxygen and nitrogen measured by variable volume method were slightly decreased with increasing of upstream pressure. The permeation properties of PSf membrane using methylene choride as casting solvent were not affected by the PSf amount of polymer solution. The permeability coefficients of oxygen and nitrogen for PSf membrane containing TCP were very slightly lower than those for pure PSf membrane, but ideal separation factors were slightly higher. The flexibility of PSf membrane containing 2wt% TCP was better than that of pure PSf membrane. It was expected that this increase in flexibility would solve the difficulty of fixing the membrane to the cathode. The membrane-covered oxygen probes system was composed of anode, cathode and electrolyte. The type of the anode was Ag/AgCl half-cell, that of cathode was Ag, and the electrolyte was 4N KCl solution. The result of sampled current voltametry for PSf membrane showed the plateu region at -0.3V~-1.0V. The correlation coefficient of oxygen partial pressure versus current for PSf membrane was relatively high, 0.99949. It was concluded that PSf membrane was the good candidate for the membrane-covered oxygen probes system.

  • PDF

Evaluation of Morphology and Water Flux for Polysulfone Flat Sheet Membrane with Conditions of Coagulation Bath and Dope Solution (응고조와 도프조성에 따른 폴리술폰 평막의 모폴로지 및 수투과도 평가)

  • Woo, Seung Moon;Chung, Youn Suk;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.258-264
    • /
    • 2012
  • In this study, to research effect of coagulation bath and composition of dope solution, polysulfone flat sheet membrane was fabricated by phase inversion method. PEG and PVP were used as additive. Concentration of polymer and additive, composition of coagulation bath was controlled to prepare flat sheet membrane. And then the morphology and water flux of prepared membrane were measured by FE-SEM and water flux testing apparatus. The highest value of water flux was measured at the membrane prepared under a 15 wt% PSF, 25 wt% PEG conditions, and water as coagulation bath. The pure water flux of the membrane composed of PSf/PEG was drastically decreased with increasing amount of DMAc. We confirmed that change of amount in additive and composition in coagulation bath influence the morphology and water flux performance of the membrane.