• Title/Summary/Keyword: Polypyrrole

Search Result 216, Processing Time 0.038 seconds

Electrochemical Properties of Polypyrrole Enzyme Electrode Immobilized Glucose Oxidase with Different Ligand (포도당 산화효소를 고정화한 Polypyrrole 효소전극의 배위자 변화에 다른 전기화학적 특성)

  • Kim, Hyun-Cheol;Gu, Han-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.529-532
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the redox potential was about -0.3 V vs. Ag/ AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-TS Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Electrochemical Properties of Polypyrrole Cathode for Lithium Secondary Batteries (리튬 2차 전지 정극으로 이용한 Polypyrrole의 전기화학적 특성)

  • 김현철;김종욱;구할본;문성인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.76-79
    • /
    • 1996
  • Polypyrrole films were electrochemically synthesized under a constant current condition ranging from 50 ${\mu}$A/$\textrm{cm}^2$ to 2 mA/$\textrm{cm}^2$ with resultant high electrical conductivity about 100 S/cm. Specific energy of 70 Wh/kg and Ah efficiency of 97% were achieved during the cycling using liquid electrolyte system. On the other hand, consequences of the cycling were 51 Wh/kg and 95% using PEO$\sub$8/LiClO$_4$PC$\sub$5/EC$\sub$5/ solid electrolyte system. Polypyrrole film can be cycled stable and Ah efficiency is excellent, so it can be applicable to the cathode of Lithium secondary batteries.

  • PDF

Electrogravimetric and Electrochemical Ac Response of Polypyrrole Films

  • Yang, Haesik;Lee, Hochun;Kwak, Juhyoun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.663-668
    • /
    • 1995
  • Ion transport of a polypyrrole/chloride (PPy/Cl) film and a polypyrrole/poly(styenesulfonate) (PPy/PSS) film as a function of applied dc potential was investigated by employing electrogravimetric impedance technique and electrochemical impedance technique. The cation and anion contribution to the whole charge capacitance and the diffusion coefficients of cation and anion in a PPy/PSS film were calculated by fitting the electrogravimetric impedance data with proposed model circuit. The diffusion coefficients of $Na^+$ in a 1 M $NaClO_4$ solution are over 1 order of magnitude larger than those of $ClO{_4}^-$, and $ClO{_4}^-$ contribution to charge compensation decreases as dc potential lowers. The charge compensation of a PPy/Cl film ir a 1 M CsCl solution is carried out largely by $Cl^-$ at 0.2 V vs. Ag/AgCl and by $Cs^+$ as well as $Cl^-$ at -0.4 V.

  • PDF

FT-IR Study of Dopant-wool Interactions During PPy Deposition

  • Varesano Alessio;Aluigi Annalisa;Tonin Claudio;Ferrero Franco
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • Coating the fibre surface by in situ oxidative chemical polymerisation of polypyrrole (using $FeCl_3$ as oxidant) is a readily industrial applicable way to give electrical properties to wool with good ageing stability [1], although pre-treatments are required to avoid damage of the cuticle surface due to the acidic condition of the process. FT-IR and EDX analysis reveal that organic sulphonates and sulphates, used as dopants, are absorbed by wool, while chlorine ions are preferably embedded on the polypyrrole layer. The resulting electrical conductivity seems mainly due to the presence of chlorine as counter-ion of polypyrrole; nevertheless, the presence of arylsulphonate in the polymerisation bath increases the electrical conductivity of the coating layer.

Improved Performance of a Microbial Fuel Cell with Polypyrrole/Carbon Black Composite Coated Carbon Paper Anodes

  • Yuan, Yong;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1344-1348
    • /
    • 2008
  • A microbial fuel cell (MFC) has been regarded as noble clean energy technology that can directly convert biomass to electricity. However, its low power density is a main limitation to be used as a new energy source. To overcome this limitation, we focused on the anode improvement in a mediator-type MFC using P. vulgaris as a biocatalyst. Fuel cell performance increased when the anode was coated with carbon black or polypyrrole. The best performance was observed when polypyrrole/carbon black (Ppy/CB) composite material was coated on a carbon paper electrode. Our obtained value of 452 mW $m^{-2}$ is the highest value among the reported ones for the similar system. The effects of amount of Ppy/CB, mediator concentration, and amount of P. vulgaris have also been examined.

Electrochemical Properties of Polypyrrole Enzyme Electrode Immobilized Glucose Oxidase with Different Ligand (포도당 산화효소를 고정화한 Polypyrrole 효소전극의 배위자 변화에 따른 전기화학적 특성)

  • 김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.529-532
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-75, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-TS Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a tent of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Electrochemical Properties of Polypyrrole Nanotubules and it's Application to Lithium Secondary Batteries (Polypyrrole Nanotubules의 전기화학적 특성과 리튬 2차전지 정극으로 응용)

  • 김민성;김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.339-342
    • /
    • 2000
  • Polypyrrole(PPy) nanotubules were formed within template pores by chemical synthesis using $FeCl_3$ as an oxidant. The oxidation peak of PPy nanotubules in the cyclic voltammogram was observed at about 2.8V and 3.3V vs. $Li/Li^+$, while in the case of PPy film, that was observed at about 3.0V. It suggests that the electron hopping on the main chain of PPy nanotubules was improved. When the PPy nanotubules was used to a cathode of lithium secondary battery, we obtained discharge capacity as much as 27 mAh/g, and initial coulomb efficiency by 90%. We expect that the capacity can be improved by further study.

  • PDF

Conducting Polypyrrole Doped with Hexacyanoferrate Anions: an Electrochemical and Spectroscopic Study

  • Han Junghee;Lee Seungjun;Paik Woon-kie
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.419-425
    • /
    • 1992
  • Conducting polypyrrole doped with iron (Ⅱ,Ⅲ) hexacyanate Fe$(CN)_6^{z-}$ ions was studied for its physical and electrochemical properties. The polymer exhibited two pairs of waves in the cyclic voltammogram, one for the reversible oxidation/reduction of the incorporated iron hexacyanate ions and the other for the near-reversible oxidation/reduction of the polypyrrole moiety. The exchange of ions incorporated in the polymer and other ions present in solutions were examined by following the decrease of the reversible redox peaks of Fe$(CN)_6^{z-}$, and by EDX analysis. The spin density of this highly conducting polymer as probed by ESR spectroscopy was extremely low compared to polypyrrole doped with common anions.

Comparisons of Stability and Spectral Response of n-Si Electrodes Modified with Polyaniline and Polypyrrole in Aqueous Solutions$^1$

  • Kim, Jin-Doo;Kim, Kang-Jin;Chon, Jung-Kyoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.362-366
    • /
    • 1987
  • Modification of n-Si electrodes coated by photogalvanostatically with polyaniline and polypyrrole in aqueous solutions considerably enhanced the stability and the spectral response of the photoelectrodes. A polypyrrole coated electrode incorporated with redox couple $Fe(CN)_{6}^{3-_6}$ / $Fe(CN)_{6}^{4-_6}$ yielded a photocurrent density of 400${\mu}A/cm^2$ for about 120 hours. Broad spectral responses over 300-850 nm were observed for both polymer coated electrodes of which polypyrrole coated one showed better current conversion efficiency.