• 제목/요약/키워드: Polypropylene(PP)

Search Result 691, Processing Time 0.038 seconds

Oxygen Barrier Coating with Carbon Interlayer on Polypropylene

  • Kim, Seong-Jin;Song, Eun-Gyeong;Jo, Gyeong-Sik;Yun, Tae-Gyeong;Mun, Myeong-Un;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.210-210
    • /
    • 2012
  • Gas barrier coating from dense thin film deposition has been one of the important applications such as food-packaging and organic display. Especially for food-packaging, plastic container has been widely used due to its low price and high through-put in mass production. However, the plastic container with low surface energy like polypropylene (PP) has been limited to apply gas barrier coating. That is because a gas barrier coating could not adhere to PP due to its too low surface energy and high porosity of PP. In this research, we applied carbon coating consisting of Si and O as an interlayer between silicon oxide (SiOx) and PP. A carbon layer was found to provide better adhesion, which was experimentally proved by oxygen transmission rate (OTR) and SEM images. However, we also found that there is a limitation in the maximum thickness of a carbon layer and SiOx film due to their high stress level. For this conflict, we obtain the optimal thickness of a carbon layer and SiOx film showing optimal gas barrier property.

  • PDF

Properties of Polypropylene/CaCO3 Composites from the Shape of Calcium Carbonate (Polypropylene/CaCO3 복합재료에 있어서 입자 형태에 따른 물성)

  • Lyu, S.G.;Bae, K.S.;Sur, G.S.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.771-776
    • /
    • 1997
  • The various shape of calcium carbonate were prepared. For the preparation of the PP/$CaCO_3$ composite, these synthetic calcium carbonate(cubic, spheric and neddle type) and PP were mixed on a two roll mill and the mixture were pressed into plate. The effect of particle shape in the prepared composite on the crystallization temperature, heat of fusion, size of spherulite and mechanical properities were investigated. It was found that the former four were strongly influenced by that. When, especially, vaterite was mixed with PP, the size of spherulite was smaller and the degree of crystallinity was higher than others. Therefore, the tensile strength and Young's modulus were higher.

  • PDF

Synthesis and Their Properties of PP Graft Copolymers by E-beam Radiation and Vapor Phase Reaction (전자선 조사 기상 반응에 의한 PP 기재 공중합체의 합성과 특성)

  • 황택성;박진원;이재천
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.287-292
    • /
    • 2002
  • Graft copolymerization of styrene and glycidyl methacrylate (GMA) to the peroxidized polypropylene (PP) fabric with E-beam in $O_2$ atmosphere was carried out in vapor phase with benzoyl peroxide (BPO) as an initiator. The degree of grafting of copolymers was increased with the increase of the reaction temperature and the highest degree of grafting was obtained at $70^{\circ}C$ with styrene, and at $80^{\circ}C$ with GMA. The highest degree of grafting of styrene grafted PP according to reaction time was higher than that of GMA grafted PP. In vapor phase graft polymerization, the degree of grafting of copolymers according to water composition in monomer mixture was effected by the boiling temperature of monomers.

A Study on the Spalling Properties of High-Performance Concrete with the Kinds of Aggregate and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성에 관한 연구)

  • 한천구;양성환;이병렬;황인성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.69-77
    • /
    • 1999
  • A spalling is defined as the damages of concrete exposed to high temperature during the fire by causing cracks and localized bursting of small pieces of concrete. It is reported that spalling is caused by the vapor pressure and polypropylene(PP) fiber has an important role in protecting from spalling. This paper is a study on the properties and spalling resistance of high-performance concrete with the kinds of aggregate and the contents of PP fiber. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimenns after fire test regardless of the kinds of aggregate. Concrete contained more than 0.05% of PP fiber with the aggregate of basalt does not take place the spalling, while the concrete using granite and limestone does the surface spalling. It is found that residual compressive strength after exposed at high temperature has 50~60% of its original strength. Although specimens after exposed at high temperature is cured at water for 28days, they do not recover their original strength.

Effect of Chlorinated Polyethylene(cPE) on Morphology and Mechanical Properties of Polypropylene(PP) and Nitrile Rubber(NBR) Blends (염소화폴리에틸렌의 첨가가 폴리프로필렌-니트릴 고무 블렌드의 모폴로지 및 기계적물성에 미치는 영향)

  • Chang, Young-Wook;Won, Jong-Hoon;Joo, Hyun-Seok;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2005
  • Effect of chlorinated polyethylene(cPE) on the morphology and mechanical properties of isotactic polypropylene(iPP) and nitrile rubber(NBR) blends was investigated. It was found that incorporation of a small amounts of cPE leads to a decrease in domain size of the dispersed phase, and uniform distribution of the dispersed phase in the blends. The PP/NBR/cPE ternary blends showed an improved tensile and tear strength as well as elongation-at-break as compared to binary PP/NBR blends. From the results on morphology and mechanical properties, optimum amount of the cPE is 5-10 wt% with repect to NBR in the blend.

Effect of waste cement bag fibers on the mechanical strength of concrete

  • Marthong, Comingstarful
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.103-115
    • /
    • 2019
  • Polypropylene (PP) fibers for making fabric which is used for packing cement have a high strength and high tear resistance. Due to these excellent properties the present study investigates the effect of PP fibers on the mechanical strength of concrete. Mechanical strength parameters such as compressive strength, splitting tensile strength and flexural strength are evaluated. Structural integrity of concrete using Ultrasonic Pulse Velocity (UPV) was also studied. Concrete containing PP fibers in percentage of 0%, 0.15%, 0.25%, 0.5% and 0.75% was developed with a characteristic compressive strength of 25 MPa. Concrete cubes, cylinder and prismatic specimens were cast and tested. It was found that the UPV values recorded for all specimens were of the similar order. Test results indicated the used of PP fibers can significantly improve the flexural and splitting tensile strengths of concrete materials whereas it resulted a decreased in compressive strength. The relative increase in split tensile and flexural strength was optimum at a fiber dosage of 0.5% and a mild decreased were observed in 28 days compressive strength. The findings in this paper suggested that PP fibers deriving from these waste cement bags are a feasible fiber option for fiber-reinforced concrete productions.

Microstructure and mechanical behavior of cementitious composites with multi-scale additives

  • Irshidat, Mohammad R.;Al-Nuaimi, Nasser;Rabie, Mohamed
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.163-171
    • /
    • 2021
  • This paper studies the effect of using multi-scale reinforcement additives on mechanical strengths, damage performance, microstructure, and water absorption of cementitious composites. Small dosages of carbon nanotubes (CNTs) or polypropylene (PP) microfibers; 0.05%, 0.1%, and 0.2% by weight of cement; were added either separately or simultaneously into cement mortar. The experimental results show the ability of these additives to enhance the mechanical behavior of the mortar. The best improvement in compressive and flexural strengths of cement mortar reaches 28% in the case of adding a combination of 0.1% CNTs and 0.2% PP fibers for compression, and a combination of 0.2% CNTs and 0.2% PP fibers for flexure. Adding CNTs does not change the brittle mode of failure of plain mortar whereas the presence of PP fibers changes it into ductile failure and clearly enhances the fracture energy of the specimens. Scanning electron microscopic (SEM) images of the fracture surfaces highlights the role of CNTs in improving the adhesion between the PP fibers and the hydration products and thus enhance the ability of the fibers to mitigate cracks propagation and to enhance the mechanical performance of the mortar.

Synthesis of Amin-type Anion Exchanger from Acrylic Acid Grafted Polypropylene Nonwoven Fabric and Its Ion-exchange Property(II) (아크릴산 그라프트 폴리프로필렌 부직포로부터 아민형 음이온 교환체의 합성 및 이온교환특성(II))

  • Na, Choon-Ki;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.775-782
    • /
    • 2009
  • PP-g-AA-Am nonwoven fabric, which possess anionic exchangeable function, was prepared by chemical modification of carboxyl (-COOH) group of PP-g-AA nonwoven fabric to amine ($-NH_2$) group using diethylene triamine (DETA). Its adsorption characteristics for anionic nutrients including isotherm, kinetics and co-anions were studied by batch adsorption experiments. Adsorption equilibriums of $PO_4$-P on PP-g-AA-Am fabric were well described by the Langmuir isotherm model, and their adsorption energies were ranged 10.3 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The adsorption selectivity of PP-g-AA-Am nonwoven fabric for anions under competition with each other was in following order: $SO_4\;^{2-}$>$PO_4\;^{3-}$>$NO_3\;^-$>$NO_2\;^-$. Also, all results obtained from this study indicate that the $PO_4$-P removal capacity of PP-g-AA-Am nonwoven fabric was extremely superior to that of PA308 anion-exchange resin.

Spalling Reduction Method of High Strength Reinforced Concrete Columns Using Fibers (섬유를 활용한 고강도 콘크리트기둥의 폭렬제어방안)

  • Yoo, Suk-Hyeong
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.7-12
    • /
    • 2009
  • As the concrete strength increases the degree of damage caused by the spalling becomes more serious because of the permeability. It is reported that the polypropylene (PP) fiber has an important role in protecting concrete from spalling. However, the excessive usage of PP fiber would not useful in spalling control and would decrease the workability of ultra high strength concrete. The high-temperature behaviors of high-strength reinforced concrete columns with various dosage of PP fibers and three types of fire endurance fibers were observed this study. In results, the ratio of unstressed residual strength of columns, in case of concrete strength 60MPa, increases as the dosage of PP fiber increases from 0% to 0.2%, however, the effect of fiber dosage on residual strength of column barely changes above 0.2% and in case of concrete strength 120MPa, PVA fiber is the most suitable fire endurance fiber in accounting fire endurance performance and workability.

Estimation of Optimum PP Fiber Content for the Spalling Control of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 폭열제어를 위한 최적의 PP섬유함유량 산정)

  • Kim, In Ki;Yoo, Suk Hyeong;Shin, Sung Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.155-163
    • /
    • 2007
  • High Strength Concrete (HSC) has weakness that in a fire, it is spalled and brittles. The phenomenon of spalling is made by water vapor's (resulting from evaporation in the material at over $100{^{\circ}C}$)' being confined in watertight concrete. As the concrete strength increases, the degree of damage caused by the spalling becomes more serious because of the permeability. It is reported that the polypropylene(PP) fiber has an important role in protecting concrete from spalling and the optimum dosage of PP fiber is 0.2%. This study was conducted on the nonreinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various dosage of PP fibers was investigated in this study. The results show that the ratio of unstressed residual strength of columns increases as the concrete strength increases and the ratio of unstressed residual strength of columns increases as the dosage of PP fiber increases from 0% to 0.2%, however, the effect of fiber dosage on residual strength of column barely changes above 0.2%.